Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A
    J Ethnopharmacol, 2024 May 10;325:117914.
    PMID: 38360381 DOI: 10.1016/j.jep.2024.117914
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and β-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated.

    AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice.

    MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study.

    RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 μg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p 

    Matched MeSH terms: Ethanol/chemistry
  2. Wong PL, Zolkeflee NKZ, Ramli NS, Tan CP, Azlan A, Tham CL, et al.
    J Ethnopharmacol, 2024 Jan 10;318(Pt B):117015.
    PMID: 37572932 DOI: 10.1016/j.jep.2023.117015
    ETHNOPHARMACOLOGICAL RELEVANCE: Ardisia elliptica Thunb. (AE) (Primulaceae) is a medicinal plant found in the Malay Peninsula and has been traditionally used to treat diabetes. However, limited studies to date in providing scientific evidence to support the antidiabetic efficacy of this plant by in-vitro and in-vivo models.

    AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.

    MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.

    RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.

    CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.

    Matched MeSH terms: Ethanol/chemistry
  3. Pratika RA, Wijaya K, Utami M, Mulijani S, Patah A, Alarifi S, et al.
    Chemosphere, 2023 Nov;341:139822.
    PMID: 37598950 DOI: 10.1016/j.chemosphere.2023.139822
    The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).
    Matched MeSH terms: Ethanol/chemistry
  4. Ahmad MA, Lim YH, Chan YS, Hsu CY, Wu TY, Sit NW
    Acta Pharm, 2022 Jun 01;72(2):317-328.
    PMID: 36651512 DOI: 10.2478/acph-2022-0013
    This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
    Matched MeSH terms: Ethanol/chemistry
  5. R R
    Appl Biochem Biotechnol, 2022 Jan;194(1):176-186.
    PMID: 34762268 DOI: 10.1007/s12010-021-03742-2
    Hellenia speciosa (J.Koenig) S.R. Dutta is a plant species belonging to the family Costaceae. It is widely distributed in China, India, Malaysia, Indonesia, tropical, and subtropical Asia. In Ayurveda, the rhizome of this plant has been extensively used to treat fever, rash, asthma, bronchitis, and intestinal worms. The objective of the present study was to investigate the phytochemical constituents of the leaf of Hellenia speciosa using gas chromatography and mass spectroscopy analysis (GC-MS). The GC-MS analysis revealed the presence of 17 phytochemical components in the ethanolic leaf extract of Hellenia speciosa. The prevailing bioactive compounds present in Hellenia speciosa were thymol (RT-10.019; 3.59%), caryophyllene (RT-11.854; 0.62%), caryophyllene oxide (RT-13.919; 1.34%), artumerone (RT-14.795; 1.35%), hexadecanoic acid methyl ester (RT-17.536; 2.77%), 9,12-octadecanoic acid methyl ester (RT-19.163; 1.35%), squalene (RT-24.980; 1.19%), piperine (RT-25.745; 3.11%), beta tocopherol (RT-26.681; 2.88%), vitamin E (RT-27.290; 2.64%), progesterone (RT-29.608; 3.18%), caparratriene (RT-29.861; 9.72%), and testosterone (RT-30.73; 5.81%). The compounds were identified by comparing their retention time and peak area with that of the literature and by interpretation of mass spectra. The results and findings of the present study suggest that the plant leaf can be used as a valuable source in the field of herbal drug discovery. The presence of bioactive compounds justifies the use of plant leaves for treating various diseases with fewer side effects and recommended the plant of pharmaceutical importance. However, further studies are needed to undertake its bioactivity and toxicity profile.
    Matched MeSH terms: Ethanol/chemistry*
  6. Ahmad Nazri KA, Haji Mohd Saad Q, Mohd Fauzi N, Buang F, Jantan I, Jubri Z
    Pharm Biol, 2021 Dec;59(1):1203-1215.
    PMID: 34493166 DOI: 10.1080/13880209.2021.1970199
    CONTEXT: Gynura procumbens (Lour.) Merr. (Asteraceae) has been reported to have various pharmacological activities including anti-inflammatory effects.

    OBJECTIVE: This study sought to determine whether Gynura procumbens (GP) could improve vascular reactivity by suppressing inflammation in postmenopausal rats fed with five-times heated palm oil (5HPO) diet.

    MATERIALS AND METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into sham [non-ovariectomized; grouped as control, GP extracts (250 and 500 mg/kg), atorvastatin (ATV, 10 mg/kg)] and postmenopausal (PM) groups [ovariectomized rats fed with 5HPO; grouped as PM, GP extracts (250 and 500 mg/kg) and ATV (10 mg/kg)]. Each group (n = 6) was either supplemented with GP extract or ATV orally once daily for 6 months.

    RESULTS: In comparison with the untreated PM group, 250 and 500 mg/kg GP supplementation to PM groups reduced the systolic blood pressure (103 ± 2.7, 86 ± 2.4 vs. 156 ± 7.83 mmHg, p 

    Matched MeSH terms: Ethanol/chemistry
  7. Hassan H, Othman MF, Zakaria ZA, Saad FFA, Abdul Razak HR
    Curr Radiopharm, 2021;14(2):131-144.
    PMID: 33115398 DOI: 10.2174/1874471013999201027215704
    BACKGROUND: Organic solvents play an indispensable role in most of the radiopharmaceutical production stages. It is almost impossible to remove them entirely in the final formulation of the product.

    OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.

    METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.

    RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).

    CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).

    Matched MeSH terms: Ethanol/chemistry
  8. Radzali SA, Markom M, Saleh NM
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322389 DOI: 10.3390/molecules25245859
    A preliminary study was conducted to study the effects of different types and concentrations of co-solvents based on yield, composition and antioxidants capacity of extract prior to optimization studies of supercritical fluid extraction (SFE) of Labisia pumila (locally referred to as 'kacip fatimah'). The following co-solvents were studied prior to the optimization of supercritical carbon dioxide (SC-CO2) technique: ethanol, water, methanol, as well as aqueous solutions of ethanol-water and methanol-water (50% and 70% v/v). By using the selected co-solvents, identification of phenolic acids (gallic acid, methyl gallate and caffeic acid) was determined by using High-Performance Liquid Chromatography (HPLC). Then, the antioxidant capacity was evaluated by using three different assays: total phenolic content (TPC), ferric reducing/antioxidant power (FRAP) and free radical-scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). SC-CO2 with 70% ethanol-water co-solvent was superior in terms of a higher combination of phenolic compounds extracted and antioxidants capacity. Overall, SC-CO2 with co-solvent 70% ethanol-water technique was efficient in extracting phenolic compounds from L. pumila, and thus the usage of this solvent system should be considered for further optimization studies.
    Matched MeSH terms: Ethanol/chemistry
  9. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
    Matched MeSH terms: Ethanol/chemistry
  10. Saleh MSM, Bukhari DAM, Siddiqui MJA, Kasmuri AR, Murugesu S, Khatib A
    Nat Prod Res, 2020 May;34(9):1341-1344.
    PMID: 30678487 DOI: 10.1080/14786419.2018.1560295
    Different extraction processes were employed to extract bioactive metabolites from Salacca zalacca flesh by a range of aqueous and organic solvents. The highest extraction yield was obtained by 50% ethanol extract of SE (73.18 ± 4.35%), whereas SFE_1 showed the lowest yield (0.42 ± 0.08%). All extracts were evaluated for in vitro α-glucosidase inhibitory activity, measured by their IC50 values in comparison to that of quercetin, the positive control (IC50 = 2.7 ± 0.7 μg/mL). The lowest α-glucosidase inhibitory activity was indicated by water extract of SE (IC50 = 724.3 ± 42.9 μg/mL) and the highest activity was demonstrated by 60% ethanol extract by UAE (IC50 = 16.2 ± 2.4 μg/mL). All extracts were analysed by GC-MS and identified metabolites like carbohydrates, fatty acids, organic acids, phenolic acids, sterols and alkane-based compounds etcetera that may possess the potential as α-glucosidase inhibitor and may attribute to the α-glucosidase inhibitory activity.
    Matched MeSH terms: Ethanol/chemistry
  11. Manogaran M, Vuanghao L, Mohamed R
    J Ethnopharmacol, 2020 Mar 01;249:112410.
    PMID: 31747560 DOI: 10.1016/j.jep.2019.112410
    ETHNOPHARMACOLOGY RELEVANCE: Gynura procumbens (Lour.) Merr. displayed cardio-protective effect that may prevent atherogenesis. The primary underlying pathological process of cardiovascular disease is atherosclerosis. Atherosclerotic lesion composed of macrophages, T cells and other immune cells which incorporated with cholesterol that infiltrates from the blood.

    AIM OF THE STUDY: The present study was performed to determine underlying mechanism of G. procumbens ethanol extract and its fractions such as aqueous, chloroform, ethyl acetate and hexane affect macrophage derived foam cell formation.

    MATERIALS AND METHODS: Lipid droplets accumulation in treated macrophages were visualized by Oil Red O staining while the total cholesterol present in the treated macrophages were measured using Cholestryl Ester quantification assay kit. Enzyme-Linked Immunosorbent Assay (ELISA) were used to detect TNF-α and IL-1β secretion in the supernatant of treated macrophages. Gene expression of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and ATP-binding cassette transporter A-1 (ABCA-1) in treated macrophages were analyzed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR).

    RESULTS: G. procumbens ethanol extract and its fractions reduced lipid droplet accumulation and total cholesterol in oxLDL-treated macrophages together with significantly reduction of TNF-α and IL-1β secretions in supernatant oxLDL-treated macrophages. LOX-1 gene expression was significantly reduced when G. procumbens ethanol extract and its fractions were added in oxDL-treated macrophages. In contrast, G. procumbens ethanol extract and its fractions significantly increased the expression of ABCA-1 gene in oxLDL-treated macrophages.

    CONCLUSION: In conclusion, G. procumbens ethanol extract and its fractions inhibit the formation of macrophage derived foam cell by reducing TNF-α and IL-1β expression, which usually highly expressed in atherosclerotic plaques, suppressing scavenger receptor LOX-1 gene that binds oxLDL but induced ABCA-1 gene that mediate lipid efflux from macrophages.

    Matched MeSH terms: Ethanol/chemistry
  12. Ng HS, Ng TC, Kee PE, Tan JS, Yim HS, Lan JC
    J Biosci Bioeng, 2020 Feb;129(2):237-241.
    PMID: 31629635 DOI: 10.1016/j.jbiosc.2019.08.013
    Aqueous biphasic flotation (ABF) integrates aqueous biphasic system (ABS) and solvent sublation for recovery of target biomolecules. The feasibility of the alcohol/salt ABF for exclusive partition of cytochrome c to one specific phase of the system was investigated. Aliphatic alcohols of different carbon chain length (ethanol, 1-propanol and 2-propanol) and salts (sulfate, phosphate and citrate) were used for the phase formation. The effects of phase composition, concentration of sample loading, pH, flotation time and flow rate of the system on the partition efficiency of cytochrome c were determined. Cytochrome c was exclusively partitioned to the alcohol-rich top phase of the ABF of 18% (w/w) ethanol and 26% (w/w) ammonium sulfate with pH 6 and 20% (w/w) of sample loading. Highest partition coefficient (K) of 6.85 ± 0.21 and yield (YT) of 99.40% ± 0.02 were obtained with optimum flotation rate of 10 mL/min and flow rate of 10 min.
    Matched MeSH terms: Ethanol/chemistry
  13. Tahmasebi-Boldaji R, Hatamipour MS, Khanahmadi M, Sadeh P, Najafipour I
    Ultrason Sonochem, 2019 Oct;57:89-97.
    PMID: 31208622 DOI: 10.1016/j.ultsonch.2019.05.018
    This paper presents the successful application of ultrasound-assisted packed-bed (UAE-PB) method for the extraction of hypericin from the Hypericum perfuratum L. The Soxhlet system was utilized for the determination of suitable solvent from ethanol, methanol or from the mixture of different proportions of ethanol-methanol. The mixture of 50:50 v/v ethanol-methanol was obtained to be the most suitable solvent since it led to the highest extraction amount of hypericin. The extraction amount of hypericin increased by 13.6% and 21.4% when the solvent changed from pure methanol to the mixture of 50:50 v/v ethanol-methanol for the extraction time of 3 and 8 h, respectively. Subsequently, the extraction was conducted through the UAE-PB, and the effects of temperature, time, and the ratio of solvent to the dried plant were studied. The response surface method (RSM) was used to investigate the effect of parameters on the extraction in the UAE-PB system. At the temperature of 60 °C, extraction time of 105 min, and the solvent to plant ratio of 15.3, the maximum extraction yield of hypericin was achieved. In the optimal conditions, the amount of extraction was 0.112 mg hypericin/g dried plant, which was in accordance with the optimized predicted value (0.111 mg hypericin/g dried plant) from Design-Expert software.
    Matched MeSH terms: Ethanol/chemistry; Methanol/chemistry
  14. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
    Matched MeSH terms: Ethanol/chemistry
  15. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
    Matched MeSH terms: Ethanol/chemistry
  16. Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, et al.
    Drug Chem Toxicol, 2018 Jan;41(1):82-88.
    PMID: 28635332 DOI: 10.1080/01480545.2017.1317785
    Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
    Matched MeSH terms: Ethanol/chemistry*
  17. Abu Bakar Sajak A, Mediani A, Maulidiani, Mohd Dom NS, Machap C, Hamid M, et al.
    Phytomedicine, 2017 Dec 01;36:201-209.
    PMID: 29157816 DOI: 10.1016/j.phymed.2017.10.011
    BACKGROUND: Ipomoea aquatica (locally known as "kangkung") has previously been reported to have hypoglycemic activities on glucose level in diabetes patients. However, the effect of I. aquatica ethanolic extract on the metabolites in the body has remained unknown.

    PURPOSE: This study provides new insights on the changes of endogenous metabolites caused by I. aquatica ethanolic extract and improves the understanding on the therapeutic efficacy and mechanism of I. aquatica ethanolic extract.

    METHODS: By using a combination of 1H nuclear magnetic resonance (NMR) with multivariate analysis (MVDA), the changes of metabolites due to I. aquatica ethanolic extract administration in obese diabetic-induced Sprague Dawley rats (OB+STZ+IA) were identified.

    RESULTS: The results suggested 19 potential biomarkers with variable importance projections (VIP) above 0.5, which include creatine/creatinine, glucose, creatinine, citrate, carnitine, 2-oxoglutarate, succinate, hippurate, leucine, 1-methylnicotinamice (MNA), taurine, 3-hydroxybutyrate (3-HB), tryptophan, lysine, trigonelline, allantoin, formiate, acetoacetate (AcAc) and dimethylamine. From the changes in the metabolites, the affected pathways and aspects of metabolism were identified.

    CONCLUSION: I. aquatica ethanolic extract increases metabolite levels such as creatinine/creatine, carnitine, MNA, trigonelline, leucine, lysine, 3-HB and decreases metabolite levels, including glucose and tricarboxylic acid (TCA) intermediates. This implies capabilities of I. aquatica ethanolic extract promoting glycolysis, gut microbiota and nicotinate/nicotinamide metabolism, improving the glomerular filtration rate (GFR) and reducing the β-oxidation rate. However, the administration of I. aquatica ethanolic extract has several drawbacks, such as unimproved changes in amino acid metabolism, especially in reducing branched chain amino acid (BCAA) synthesis pathways and lipid metabolism.

    Matched MeSH terms: Ethanol/chemistry
  18. Zhao L, Yu M, Sun M, Xue X, Wang T, Cao W, et al.
    Molecules, 2017 Nov 10;22(11).
    PMID: 29125569 DOI: 10.3390/molecules22111935
    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees-Heterotrigona itama-by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24(E)-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.
    Matched MeSH terms: Ethanol/chemistry*
  19. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
    Matched MeSH terms: Ethanol/chemistry
  20. Valizadeh N, Valian F, Sadeghifard N, Karami S, Pakzad I, Kazemian H, et al.
    Drug Res (Stuttg), 2017 Jul;67(7):385-387.
    PMID: 28320039 DOI: 10.1055/s-0043-102060
    Toxin antitoxin system is a regulatory system that antitoxin inhibits the toxin. We aimed to determine the role of TA loci in biofilm formation in K. pneumoniae clinical and environmental isolates; also inhibition of biofilm formation by Peganum harmala. So, 40 K. pneumoniae clinical and environmental isolates were subjected for PCR to determine the frequency of mazEF, relEB, and mqsRA TA loci. Biofilm formation assay subjected for all isolates. Then, P. harmala was tested against positive biofilm formation strains. Our results demonstrated that relBE TA loci were dominant TA loci; whereas mqsRA TA loci were negative in all isolates. The most environmental isolates showed weak and no biofilm formation while strong and moderate biofilm formation observed in clinical isolates. Biofilm formations by K. pneumoniae in 9 ug/ml concentration were inhibited by P. harmala. In vivo study suggested to be performed to introduce Peganum harmala as anti-biofilm formation in K. pneumoniae.
    Matched MeSH terms: Ethanol/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links