Displaying publications 1 - 20 of 65 in total

  1. Al-Dualimi DW, Shah Abdul Majid A, Al-Shimary SFF, Al-Saadi AA, Al Zarzour R, Asif M, et al.
    Drug Chem Toxicol, 2018 Jan;41(1):82-88.
    PMID: 28635332 DOI: 10.1080/01480545.2017.1317785
    Herbal products contain a variety of compounds which may be useful in protecting against cellular damage caused by mutagens. Orthosiphon stamineus (O.s) also known as Cat whiskers. The herb has been shown anti-oxidative properties and can modulate key cellular proteins that have cytoprotective effect. The study aimed to evaluate the effects of different doses (250, 500 and 1000 mg kg-1) of 50% ethanol extract of O.s (Et. O.s) on micro-nucleated polychromatic erythrocytes (MNPCE), Polychromatic to normachromatic erythrocytes ratio (PCE/NCE), Mitotic index (MI), and Chromosomal aberration (CA) in Bab/c mice. Moreover, these parameters were used to evaluate the anti-genotoxic and clastogenic potencies of (Et. O.s) against mitomycin c (MMC) that interact with biological molecules and induce genotoxic and clastogenic disorders in non-tumor cells. MMC (4 mg kg-1) was injected intraperitoneally (i.p.) to the mice before and after treatment with three different doses of (Et. O.s). The results indicated that the extract at different doses did not show significant (p ≥ 0.05) differences in (MNPCE), (PCE/NCE) ratios, and (CA) values. The higher doses sowed high (MI) values compared with untreated control group. MMC showed significant increase (p ≤ 0.001) in (MNPCE), (CA) and reduce (PCE/NCE) and (MI) values compared with untreated control group. Treatment with (Et. O.s) at different doses before and after MMC injection showed to modulate MNPCE, PCE/NCE ratios, CA and MI values in mice bone marrow cells suggesting genoprotective potential of this plant extract.
    Matched MeSH terms: Ethanol/chemistry*
  2. Memon AH, Hamil MS, Laghari M, Rithwan F, Zhari S, Saeed MA, et al.
    J Zhejiang Univ Sci B, 2016 Sep;17(9):683-982.
    PMID: 27604860 DOI: 10.1631/jzus.B1600019
    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).
    Matched MeSH terms: Ethanol/chemistry; Methanol/chemistry
  3. Arafat MM, Haseeb AS, Akbar SA
    Sensors (Basel), 2014;14(8):13613-27.
    PMID: 25072346 DOI: 10.3390/s140813613
    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.
    Matched MeSH terms: Ethanol/chemistry*
  4. Hassan H, Othman MF, Zakaria ZA, Saad FFA, Abdul Razak HR
    Curr Radiopharm, 2021;14(2):131-144.
    PMID: 33115398 DOI: 10.2174/1874471013999201027215704
    BACKGROUND: Organic solvents play an indispensable role in most of the radiopharmaceutical production stages. It is almost impossible to remove them entirely in the final formulation of the product.

    OBJECTIVE: In this presented work, an analytical method by gas chromatography coupled with flame ionization detection (GC-FID) has been developed to determine organic solvents in radiopharmaceutical samples. The effect of injection holding time, temperature variation in the injection port, and the column temperature on the analysis time and resolution (R ≥ 1.5) of ethanol and acetonitrile was studied extensively.

    METHODS: The experimental conditions were optimized with the aid of further statistical analysis; thence, the proposed method was validated following the International Council for Harmonisation (ICH) Q2 (R1) guideline.

    RESULTS: The proposed analytical method surpassed the acceptance criteria including the linearity > 0.990 (correlation coefficient of R2), precision < 2%, LOD, and LOQ, accuracy > 90% for all solvents. The separation between ethanol and acetonitrile was acceptable with a resolution R > 1.5. Further statistical analysis of Oneway ANOVA revealed that the increment in injection holding time and variation of temperature at the injection port did not significantly affect the analysis time. Nevertheless, the variation in injection port temperature substantially influenced the resolution of ethanol and acetonitrile peaks (p < 0.05).

    CONCLUSION: The proposed analytical method has been successfully implemented to determine the organic solvent in the [18F]fluoro-ethyl-tyrosine ([18F]FET), [18F]fluoromisonidazole ([18F]FMISO), and [18F]fluorothymidine ([18F]FLT).

    Matched MeSH terms: Ethanol/chemistry
  5. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
    Matched MeSH terms: Ethanol/chemistry
  6. Ramli S, Radu S, Shaari K, Rukayadi Y
    Biomed Res Int, 2017;2017:9024246.
    PMID: 29410966 DOI: 10.1155/2017/9024246
    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58-9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials.
    Matched MeSH terms: Ethanol/chemistry*
  7. Ibrahim D, Osman H
    J Ethnopharmacol, 1995 Mar;45(3):151-6.
    PMID: 7623478
    Ethanolic extract of Cassia alata leaves was investigated for its antimicrobial activities on several microorganisms including bacteria, yeast, dermatophytic fungi and non-dermatophytic fungi. In vitro, the extract exhibited high activity against various species of dermatophytic fungi but low activity against non-dermatophytic fungi. However, bacterial and yeast species showed resistance against in vitro treatment with the extract. The minimum inhibitory concentration (MIC) values of the extract revealed that Trichophyton mentagorphytes var. interdigitale, Trichophyton mentagrophytes var. mentagorophytes, Trichophyton rubrum and Microsporum gypseum had the MIC of 125 mg/ml, whereas Microsporum canis had the MIC of 62.5 mg/ml. The inhibition can be observed on the macroconidia of Microsporum gypseum which resulted in structural degeneration beyond repair. The mechanism of inhibition can be related to the cell leakage as observed by irregular, wrinkle shape and loss in rigidity of the macroconidia.
    Matched MeSH terms: Ethanol/chemistry
  8. Din WM, Chu J, Clarke G, Jin KT, Bradshaw TD, Fry JR, et al.
    Nat Prod Commun, 2013 Mar;8(3):375-80.
    PMID: 23678815
    In the annals of biomedical theory perhaps no single class of natural product has enjoyed more ingenious speculation than antioxidants formally aimed at counteracting oxidative insults which are involved in the pathophysiology of Alzheimer's and Parkinson's disease, cancer, amyotrophic lateral sclerosis, skin ageing and wound healing. In pursuing our study of Malaysian traditional medicines with antioxidant properties, we became interested in Acalypha wilkesiana var. macafeana hort., used traditionally to heal wounds. To examine whether Acalypha wilkesiana var. macafeana hort. could suppress oxidation an ethanol extract was tested by conventional chemical in vitro assays i.e., ferric reducing antioxidant potential assay (FRAP), DPPH scavenging assay and beta-carotene bleaching (BCB) assay. To explore whether Acalypha wilkesiana var. macafeana hort. protected cells against oxidative injuries, we exposed human hepatocellular liver carcinoma (HepG2) cells to tert-butylhydroperoxide (t-BHP). In all the aforementioned experiments, the ethanol extracts elicited potent antioxidant and cytoprotective activities. To gain a better understanding of the phytochemical nature of the antioxidant principle involved, five fractions (F1-F5) obtained from the ethanol extract were tested using FRAP, DPPH and BCB assays. Our results provided evidence that F5 was the most active fraction with antioxidant potentials equal to 2.090 +/- 0.307 microg/mL, 0.532 +/- 0.041 microg/mL, 0.032 +/- 0.025 microg/mL in FRAP, DPPH and BCB assay, respectively. Interestingly, F5 protected HepG2 against t-BHP oxidative insults. To further define the chemical identity of the antioxidant principle, we first performed a series of phytochemical tests, followed by liquid-chromatography and mass spectrometry (LC/MS) profiling which showed that the major compound contained in F5 was geraniin. To the best of our knowledge, this is the first report showing that the wound healing property of Acalypha wilkesiana var. macafeana hort. is mediated by a geraniin containing extract. Furthermore, our data leads us to conclude that geraniin could be used as a potential pharmaceutical and/or cosmetic topical agent.
    Matched MeSH terms: Ethanol/chemistry*
  9. Wasman SQ, Mahmood AA, Chua LS, Alshawsh MA, Hamdan S
    Indian J. Exp. Biol., 2011 Oct;49(10):767-72.
    PMID: 22013743
    Antioxidant and gastroprotective activities of aqueous and ethanolic extract of Andrographis paniculata leaves in rats have been reported. Sprague Dawley rats, 6 per group were used and rats in groups 1 to 6 were pretreated with (0.25% w/v) carboxymethyl cellulose (negative control, 5 ml/kg), 20 mg/kg omeprazole (positive control), (250 mg/kg and 500 mg/kg) of aqueous leaf extracts (APLAE) and (250 and 500 mg/kg) of ethanol leaf extracts (APLEE) respectively. Animals were orally administered with 95% ethanol (5 ml/kg) 60 min after their pretreatments. Rats were sacrificed 1 h after treatment and gastric contents were collected to measure pH and mucous weight. Stomach was analyzed for gross and histological changes. Ulcer control group showed extensive lesions of gastric mucosal layer, whereas rats pretreated with omeprazole, 250 and 500 mg/kg of APLAE showed significant and dose dependent reduction in gastric lesions with increased pH and mucus content of stomach. Rats pretreated with 250 or 500 mg/kg of APLEE showed significantly better inhibition of gastric mucosal lesions. Further, the in vitro antioxidant studies using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that ethanol extracts have superior free radical scavenging activity with IC50 value = 10.9 than aqueous extracts with IC50 value = 24.65. Results of this study showed that pretreatment with ethonolic extract of A. paniculata ethanolic provided significant protection against gastric ulcer by regulating of pH, mucous production and antioxidant property.
    Matched MeSH terms: Ethanol/chemistry
  10. Hussain K, Ismail Z, Sadikun A, Ibrahim P
    Nat Prod Res, 2009;23(3):238-49.
    PMID: 19235024 DOI: 10.1080/14786410801987597
    Ethanol and aqueous extracts of the different parts of Piper sarmentosum were analysed by HPLC for marker compounds to standardise these extracts. The standardised extracts were investigated for antioxidant activity (beta-carotene linoleate model and DPPH model), anti-TB activity (microplate tetrazolium assay), and estimation of total phenolic and amide contents. The extracts of the different parts exhibited different antioxidant activity, phenolic and amide contents (p < 0.01). The ethanol extracts exhibited better antioxidant activity as compared to the aqueous extracts. The leaf ethanol extract was further investigated for dose response relationship and its EC(50) was found to be 38 microg mL(-1). All the extracts have exhibited anti-TB activity with MIC/MBC 12.5 microg mL(-1). The leaf methanol extract was fractionated and the ethyl acetate fraction exhibited anti-TB activity with MIC/MBC 3.12 microg mL(-1) while MIC/MBC of isoniazid (INH) was found to be 0.5 microg mL(-1). A positive correlation was found between antioxidant activity and total polyphenols, flavonoids and amides, in the beta-carotene linoleate model (p = 0.05) and in the DPPH model (p = 0.01). The analytical method was found to have linearity >0.9922, coefficient of variance <5% and accuracy 95.5 +/- 5 to 96.9 +/- 5. This plant possesses promising antioxidant as well as anti-TB properties.
    Matched MeSH terms: Ethanol/chemistry
  11. Ling LT, Radhakrishnan AK, Subramaniam T, Cheng HM, Palanisamy UD
    Molecules, 2010 Apr;15(4):2139-51.
    PMID: 20428033 DOI: 10.3390/molecules15042139
    Thirteen Malaysian plants; Artocarpus champeden, Azadirachta indica, Fragaria x ananassa, Garcinia mangostana, Lawsonia inermis, Mangifera indica, Nephelium lappaceum, Nephelium mutobile, Peltophorum pterocarpum, Psidium guajava and Syzygium aqueum, selected for their use in traditional medicine, were subjected to a variety of assays. Antioxidant capability, total phenolic content, elemental composition, as well as it cytotoxity to several cell lines of the aqueous and ethanolic extracts from different parts of these selected Malaysian plants were determined. In general, the ethanolic extracts were better free radical scavengers than the aqueous extracts and some of the tested extracts were even more potent than a commercial grape seed preparation. Similar results were seen in the lipid peroxidation inhibition studies. Our findings also showed a strong correlation of antioxidant activity with the total phenolic content. These extracts when tested for its heavy metals content, were found to be below permissible value for nutraceutical application. In addition, most of the extracts were found not cytotoxic to 3T3 and 4T1 cells at concentrations as high as 100 microg/mL. We conclude that although traditionally these plants are used in the aqueous form, its commercial preparation could be achieved using ethanol since a high total phenolic content and antioxidant activity is associated with this method of preparation.
    Matched MeSH terms: Ethanol/chemistry
  12. Tay PY, Tan CP, Abas F, Yim HS, Ho CW
    Molecules, 2014 Aug 14;19(8):12304-19.
    PMID: 25153858 DOI: 10.3390/molecules190812304
    The effects of ethanol concentration (0%-100%, v/v), solid-to-solvent ratio (1:10-1:60, w/v) and extraction time (30-180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate--EGCG and epicatechin gallate--ECG) and a benzophenone (iriflophenone 3-C-β-glucoside) from the crude polyphenol extract (CPE) of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p<0.05) on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v) ethanol, 1:60 (w/v) for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L.
    Matched MeSH terms: Ethanol/chemistry
  13. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
    Matched MeSH terms: Ethanol/chemistry*
  14. Murugesu K, Murugaiyah V, Saghir SAM, Asmawi MZ, Sadikun A
    Curr Pharm Biotechnol, 2017;18(14):1132-1140.
    PMID: 29564975 DOI: 10.2174/1389201019666180322111800
    BACKGROUND: Ethanolic extract of G. procumbens leaves has been previously shown to possess antihyperlipidemic effects.

    OBJECTIVE: This study was designed to prepare caffeoylquinic acids rich and poor fractions of the ethanolic extract using resin column technology and compare their antihyperlipidemic and antioxidant potentials.

    RESULTS: Among the treatment groups, caffeoylquinic acids rich fraction (F2) and chlorogenic acid (CA, one of the major caffeoylquinic acids) showed potent antihyperlipidemic effects, with significant reductions in total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), atherogenic index (AI) and coronary risk index (CRI) (p<0.01 or better) compared to the hyperlipidemic control at the 58 h. The effect was better than that of ethanolic extract. In addition, only F2 significantly increased the high-density lipoproteincholesterol (HDL-C) level (p<0.05). F2 showed better effect than CA alone (60 mg) despite the fact that it only contained 9.81 mg CA/1000 mg dose. The findings suggest that the di-caffeoylquinic acids (86.61 mg/g dose) may also in part be responsible for the potent antihyperlipidemic effect shown by the F2. Likewise, F2 showed the highest antioxidant activity. Thus, simple fractionation of ethanolic extract using the Amberlite XAD-2 resin technique had successfully enriched the caffeoylquinic acids into F2 with improved antihyperlipidemic and antioxidant capacities than that of the ethanolic extract.

    CONCLUSION: The resin separation technology may find application in caffeoylquinic acids enrichment of plant extracts for pre-clinical studies. The F2 has potential for development into phytopharmaceuticals as adjunct therapy for management of hyperlipidemia.

    Matched MeSH terms: Ethanol/chemistry
  15. Ahmad MA, Lim YH, Chan YS, Hsu CY, Wu TY, Sit NW
    Acta Pharm, 2022 Jun 01;72(2):317-328.
    PMID: 36651512 DOI: 10.2478/acph-2022-0013
    This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
    Matched MeSH terms: Ethanol/chemistry
  16. Hoidy WH, Ahmad MB, Al-Mulla EA, Yunus WZ, Ibrahim Na
    J Oleo Sci, 2010;59(5):229-33.
    PMID: 20431238
    Difatty acyl thiourea (DFAT), which has biological activities as antibiotics and antifungal, has been synthesized from palm oil and thiourea using sodium ethoxide as catalyst. Ethyl fatty ester (EFE) and glycerol were produced as by-products. The synthesis was carried out by reflux palm oil with thiourea in ethanol. In this process, palm oil converted to about 81% pure DFAT after 11 hour and molar ratio of thiourea to palm oil was 6.0: 1 at 78 degrees C. Elemental analysis, Fourier transform iInfrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique were used to characterize both DFAT and EFE.
    Matched MeSH terms: Ethanol/chemistry
  17. Huang D, Guo W, Gao J, Chen J, Olatunji JO
    Molecules, 2015;20(9):17405-28.
    PMID: 26393569 DOI: 10.3390/molecules200917405
    Clinacanthans nutans (Burm. f.) Lindau is a popular medicinal vegetable in Southern Asia, and its extracts have displayed significant anti-proliferative effects on cancer cells in vitro. However, the underlying mechanism for this effect has yet to be established. This study investigated the antitumor and immunomodulatory activity of C. nutans (Burm. f.) Lindau 30% ethanol extract (CN30) in vivo. CN30 was prepared and its main components were identified using high-performance liquid chromatography (HPLC) and mass spectrometry (LC/MS/MS). CN30 had a significant inhibitory effect on tumor volume and weight. Hematoxylin and eosin (H & E) staining and TUNEL assay revealed that hepatoma cells underwent significant apoptosis with CN30 treatment, while expression levels of proliferation markers PCNA and p-AKT were significantly decreased when treated with low or high doses of CN30 treatment. Western blot analysis of PAPR, caspase-3, BAX, and Bcl2 also showed that CN30 induced apoptosis in hepatoma cells. Furthermore, intracellular staining analysis showed that CN30 treatment increased the number of IFN-γ⁺ T cells and decreased the number of IL-4⁺ T cells. Serum IFN-γ and interleukin-2 levels also significantly improved. Our findings indicated that CN30 demonstrated antitumor properties by up-regulating the immune response, and warrants further evaluation as a potential therapeutic agent for the treatment and prevention of cancers.
    Matched MeSH terms: Ethanol/chemistry
  18. Radzali SA, Markom M, Saleh NM
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322389 DOI: 10.3390/molecules25245859
    A preliminary study was conducted to study the effects of different types and concentrations of co-solvents based on yield, composition and antioxidants capacity of extract prior to optimization studies of supercritical fluid extraction (SFE) of Labisia pumila (locally referred to as 'kacip fatimah'). The following co-solvents were studied prior to the optimization of supercritical carbon dioxide (SC-CO2) technique: ethanol, water, methanol, as well as aqueous solutions of ethanol-water and methanol-water (50% and 70% v/v). By using the selected co-solvents, identification of phenolic acids (gallic acid, methyl gallate and caffeic acid) was determined by using High-Performance Liquid Chromatography (HPLC). Then, the antioxidant capacity was evaluated by using three different assays: total phenolic content (TPC), ferric reducing/antioxidant power (FRAP) and free radical-scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). SC-CO2 with 70% ethanol-water co-solvent was superior in terms of a higher combination of phenolic compounds extracted and antioxidants capacity. Overall, SC-CO2 with co-solvent 70% ethanol-water technique was efficient in extracting phenolic compounds from L. pumila, and thus the usage of this solvent system should be considered for further optimization studies.
    Matched MeSH terms: Ethanol/chemistry
  19. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Ethanol/chemistry
  20. Mediani A, Abas F, Khatib A, Tan CP
    Molecules, 2013 Aug 29;18(9):10452-64.
    PMID: 23994970 DOI: 10.3390/molecules180910452
    The aim of the study was to analyze the influence of oven thermal processing of Cosmos caudatus on the total polyphenolic content (TPC) and antioxidant capacity (DPPH) of two different solvent extracts (80% methanol, and 80% ethanol). Sonication was used to extract bioactive compounds from this herb. The results showed that the optimised conditions for the oven drying method for 80% methanol and 80% ethanol were 44.5 °C for 4 h with an IC₅₀ of 0.045 mg/mL and 43.12 °C for 4.05 h with an IC₅₀ of 0.055 mg/mL, respectively. The predicted values for TPC under the optimised conditions for 80% methanol and 80% ethanol were 16.5 and 15.8 mg GAE/100 g DW, respectively. The results obtained from this study demonstrate that Cosmos caudatus can be used as a potential source of antioxidants for food and medicinal applications.
    Matched MeSH terms: Ethanol/chemistry; Methanol/chemistry
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links