Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
    Matched MeSH terms: Eugenol/administration & dosage; Eugenol/analogs & derivatives*; Eugenol/pharmacology
  2. Swamy MK, Sinniah UR
    Molecules, 2015 May 12;20(5):8521-47.
    PMID: 25985355 DOI: 10.3390/molecules20058521
    Pogostemon cablin Benth. (patchouli) is an important herb which possesses many therapeutic properties and is widely used in the fragrance industries. In traditional medicinal practices, it is used to treat colds, headaches, fever, nausea, vomiting, diarrhea, abdominal pain, insect and snake bites. In aromatherapy, patchouli oil is used to relieve depression, stress, calm nerves, control appetite and to improve sexual interest. Till now more than 140 compounds, including terpenoids, phytosterols, flavonoids, organic acids, lignins, alkaloids, glycosides, alcohols, aldehydes have been isolated and identified from patchouli. The main phytochemical compounds are patchouli alcohol, α-patchoulene, β-patchoulene, α-bulnesene, seychellene, norpatchoulenol, pogostone, eugenol and pogostol. Modern studies have revealed several biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, antimutagenic, antiemetic, fibrinolytic and cytotoxic activities. However, some of the traditional uses need to be verified and may require standardizing and authenticating the bioactivity of purified compounds through scientific methods. The aim of the present review is to provide comprehensive knowledge on the phytochemistry and pharmacological activities of essential oil and different plant extracts of patchouli based on the available scientific literature. This information will provide a potential guide in exploring the use of main active compounds of patchouli in various medical fields.
    Matched MeSH terms: Eugenol/therapeutic use; Eugenol/chemistry
  3. Lim JHC, Azman BAR, Othman BHR
    Zookeys, 2019;859:17-29.
    PMID: 31327920 DOI: 10.3897/zookeys.859.33284
    A new species of caprellid, Aciconulatinggiensis (Amphipoda, Senticaudata, Caprellidae) was discovered from Pulau Tinggi, Sultan Iskandar Marine Park (SIMP), South China Sea, Malaysia. The new Malaysian species can be distinguished from the other Aciconula species by the combination of the following characters: 1. the presence of a very small suture between head and pereonite 1; 2. antenna 1 flagellum with 4 articles; 3. inner lobe of lower lip unilobed; 4. gnathopod 2 palm of propodus with a large proximal projection (stretching from the proximal margin of the palm to nearly mid-way of palm); 5. pereopods 3-4 with 2 articles (article 1 subrectangular, article 2 conical or tapering at the tip with 1 plumose seta and 2 normal setae) and; 6. pereopod 5 covered with relatively dense and long setae. An updated identification key for the five known species in the genus, including information on the respective geographical distribution and habitat, is presented.
    Matched MeSH terms: Eugenol
  4. Wee SL, Tan KH
    J Chem Ecol, 2001 May;27(5):953-64.
    PMID: 11471947 DOI: 10.1023/A:1010387020135
    Methyl eugenol (ME), is converted into two major phenylpropanoids, 2-allyl-4,5-dimethoxyphenol and trans-coniferyl alcohol, following consumption by the male fruit fly Bactrocera papayae. Chemical analysis of wild male B. papayae rectal glands, where the compounds are sequestered, revealed the presence of ME metabolites in varying quantities. These phenylpropanoids are shown to be involved in the fruit fly defense both in no-choice and choice feeding tests against the Malayan spiny gecko, Gekko monarchus. After being acclimatized to feeding on fruit flies, geckos consumed significantly fewer ME-fed male flies than controls that consumed all the ME-deprived male flies offered throughout a two-week period. Diagnosis of dissected livers from geckos that consumed ME-fed male flies revealed various abnormalities. These included discoloration and hardening of liver tissue, whitening of the gallbladder, or presence of tumor-like growths in all geckos that consumed ME-fed male flies. Control geckos fed on ME-deprived male flies had healthy livers. When given an alternative prey, geckos preferred to eat untreated house flies, Musca domestica to avoid preying on ME-fed fruit flies.
    Matched MeSH terms: Eugenol/analogs & derivatives*; Eugenol/metabolism*; Eugenol/pharmacokinetics; Eugenol/toxicity*
  5. Gokhan Gunduz, Barbaros Yaman, Seray Ozden, Suleyman Donmez
    Sains Malaysiana, 2013;42:547-552.
    Composite archery bows have been well known and used by Asiatic societies for thousands of years. The Turkish composite bow, made of wood, horn, sinew and glue is one of the most famous and powerful bows in the world. Because of its high draw weight and mechanical efficiency, the Turkish composite bow became a powerful weapon in the Seljuk and the Ottoman empire. In addition to being a powerful weapon of war, at the same time the bow and arrow (archery) continued
    to be a sport of Ottoman (sultans, state officials, janissaries) until the late Ottoman period. In this study of the Ottoman composite archery bows in the collections of Izmir Ethnography Museum, a small wood sample was investigated on the basis of its wood anatomy. The results showed that it was made of maple wood (Acer sp.) and some of its qualitative and quantitative anatomical properties are presented here. One of the key properties for the identification of maple wood is
    the helical thickening throughout the body of the vessel element. Helical thickenings in vessel elements in cutting surfaces of maple-wooden core increase the bonding surface between the wood and sinew-horn. In most of the woods preferred traditionally for bow-making, helical thickenings in tracheids, vessel elements or ground tissue fibres should be taken into account at a hierarchy of cellular structures for elucidating the efficiency of Ottoman composite-wooden bow.
    Matched MeSH terms: Eugenol
  6. Moharm, Bushra Abdulkarim, Ibrahim Jantan, Santhanam, Jacinta, Jamia Azdina Jamal
    MyJurnal
    The leaf and bark oils of Cinnamomum verum J.S. Presl. were examined for their antifungal activity against 6 dermatophytes (Trichophyton rubrum, T. mentagrophytes, T. tonsurans, Microsporum canis, M. gypseum and M. audouini), one filamentous fungi (Aspergillus fumigatus) and 5 strains of yeasts (Candida albicans, Ca. glabrata, Ca. tropicalis, Ca. parapsilosis and Crytococcus neoformans) by using the broth microdilution method. The antifungal activities of 4 standard compounds (cinnamaldehyde, eugenol, linalool and a-terpineol) which were major constituents in the oils were also investigated in an effort to correlate the effectiveness of the oils with those of the components of the oils. The combined antifungal effect of the oils against M. canis, M. gypseum and Cr. neoformans was investigated by the checkerboard assay. Isobolograms were constructed and Fractional Inhibitory Concentrations Index (FICI) were calculated to determine the combination effects between the oils. The chemical composition of the oils was analyzed by gas chromatography (GC) and gas chromatography- mass spectrometry (GC-MS). The oils showed strong activity against all the tested fungi with Minimum Inhibition Concentration (MIC) values ranging from 0.04 to 0.31 mg/ml. Cinnamaldehyde which was the most abundant component of the bark oil of C. verum showed the strongest activity against all the fungi studied. Based on the results of the assay on standard samples, it may be that the high levels of cinnamaldehyde and eugenol in the oils and in combination with the minor components could be responsible for the high antifungal activity of the oils. The antifungal effect of the leaf and bark oils of C. verum in combination against the tested fungi was not synergistic. However, the effect was additive against M. gypseum and antagonistic against Cr. neoformans and M. canis.
    Matched MeSH terms: Eugenol
  7. Zanul Abidin Z, Mohd Salleh N, Himratul-Aznita WH, Ahmad SF, Lim GS, Raja Mohd N, et al.
    PeerJ, 2023;11:e15750.
    PMID: 37601266 DOI: 10.7717/peerj.15750
    BACKGROUND: The study's objective is to assess the adherence of C. albicans in different types of denture polymers and the effectiveness of eugenol and commercialized denture cleansers in the removal of C. albicans. Three types of denture base polymers (Lucitone® 199 (High-Impact PMMA), Impact® (conventional PMMA) and Eclipse® (UDMA)) and two hard denture reline materials (Kooliner® and Tokuyama® Rebase II Fast) were used in this study.

    METHODS: Three hundred samples were prepared (6 × 2 mm disc shape) and divided into five groups of denture polymers (n = 60) and further subjected into five treatment groups (Polident®, Steradent, distilled water, eugenol 5-minutes, and eugenol 10-min). Three samples were extracted from each treatment group for baseline data (n = 12). Baseline data were used to calculate the initial number of C. albicans adherence. A 0.5 ml immersion solution from each specimen was cultured on YPD agar and incubated for 48 h at 37 °C. Visible colonies were counted using a colony counter machine (ROCKER Galaxy 230).

    RESULTS: The result showed that the denture base polymer significantly affected the initial adherence (p = 0.007). The removal of C. albicans was also considerably affected by the denture base polymers and denture cleansers (p eugenol showed the best results of removal.

    DISCUSSION: This study's overall results showed that all denture polymers used as denture bases had an effect on C. albicans initial adherence and removal from the denture base, and eugenol is comparable to commercialised denture cleansers in reducing the number of attached C. albicans on denture base polymers.

    Matched MeSH terms: Eugenol/pharmacology
  8. Wee SL, Abdul Munir MZ, Hee AKW
    Bull. Entomol. Res., 2018 Feb;108(1):116-124.
    PMID: 28625191 DOI: 10.1017/S0007485317000554
    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.
    Matched MeSH terms: Eugenol/analogs & derivatives*; Eugenol/pharmacology
  9. Hee AK, Tan KH
    Bull. Entomol. Res., 2005 Dec;95(6):615-20.
    PMID: 16336709 DOI: 10.1079/BER2005392
    Sex pheromonal components of the tephritid fruit fly Bactrocera dorsalis (Hendel), 2-allyl-4,5-dimethoxyphenol and (E)-coniferyl alcohol, are biosynthesized from a highly potent male attractant, methyl eugenol, then sequestered and stored in the rectal gland prior to their release during courtship at dusk. These sex pheromonal components have been detected in the haemolymph and crop organ. Hence, attempts were made to separate and identify the haemolymph fractions which contained the sex pheromonal components. Identification of these bioactive fractions in methyl eugenol-fed male flies using gel filtration column chromatography and biodetection using live male flies showed two fractions as highly attractive to conspecific males. These fractions show a significant increase in protein absorbance in the elution profile of haemolymph from methyl eugenol-fed males compared with that from methyl eugenol-deprived males. The molecular mass of these bioactive fractions as determined by using gel filtration was in the peptide range of 3.3 to 5.5 kDa. Subsequent gas chromatography-mass spectrometry analyses further confirmed the presence of the pheromonal components in the bioactive fractions. The presence of these methyl eugenol-derived sex pheromonal components in specific haemolymph fractions suggests the involvement of a sex pheromone binding complex.
    Matched MeSH terms: Eugenol/analogs & derivatives*; Eugenol/blood
  10. Zamzuri NA, Abd-Aziz S
    J Sci Food Agric, 2013 Feb;93(3):429-38.
    PMID: 23208984 DOI: 10.1002/jsfa.5962
    This review provides an overview of biovanillin production from agro wastes as an alternative food flavour. Biovanillin is one of the widely used flavour compounds in the foods, beverages and pharmaceutical industries. An alternative production approach for biovanillin as a food flavour is hoped for due to the high and variable cost of natural vanillin as well as the limited availability of vanilla pods in the market. Natural vanillin refers to the main organic compound that is extracted from the vanilla bean, as compared to biovanillin, which is produced biologically by microorganisms from a natural precursor such as ferulic acid. Biovanillin is also reviewed as a potential bioflavour produced by microbial fermentation in an economically feasible way in the near future. In fact, we briefly discuss natural, synthetic and biovanillin and the types of agro wastes that are useful as sources for bioconversion of ferulic acid into biovanillin. The subsequent part of the review emphasizes the current application of vanillin as well as the utilization of biovanillin as an alternative food flavour. The final part summarizes biovanillin production from agro wastes that could be of benefit as a food flavour derived from potential natural precursors.
    Matched MeSH terms: Eugenol/analogs & derivatives; Eugenol/metabolism
  11. Shaipulah NF, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, et al.
    Plant Physiol, 2016 Feb;170(2):717-31.
    PMID: 26620524 DOI: 10.1104/pp.15.01646
    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
    Matched MeSH terms: Eugenol/analogs & derivatives; Eugenol/metabolism; Eugenol/chemistry
  12. Jesús Luengo Fereira, Heraclio Reyes Rivas, Luz Elena Carlos Medrano, Iovanna Toscano, Minerva Anaya Alvarez
    Sains Malaysiana, 2018;47:971-976.
    This study has been carried out to evaluate the clinical and radiographic CTZ (Chloramphenicol-Tetracycline-Zinc
    Eugenol Oxide) antibiotic paste in pulpotomies of primary molars. A Quasi-experimental study in 43 primary molars
    of children aged 3 to 7 years. Pulpotomies were performed on the selected patients with the CTZ antibiotic paste. Teeth
    were restored with glass ionomer and preformed steel metal crowns. Clinical and radiographic evaluation was performed
    at 6 and 12 months. SPSS V-19 program for data analysis and chi-square test was used up to 5%. Success rates were
    observed during the evaluation periods of time. 93% (x2
    = 0.446, p>0.05) and 88.4% (x2
    = 0.431, p>0.05) of the clinical form;
    97.7% (x2
    = 0.534, p>0.05) and 93% (x2
    = 0.553, p>0.05) were radiographic, at 6 and 12 months, respectively. The CTZ antibiotic
    paste is an alternative in the treatment of pulpotomy of molars. It provides an antimicrobial effect, decreased operative time, without
    causing trauma to the pediatric patient.
    Matched MeSH terms: Eugenol
  13. Singh S, Srivastava B, Gupta K, Gupta N, Singh R, Singh S
    Int J Clin Pediatr Dent, 2020 8 4;13(2):119-123.
    PMID: 32742086 DOI: 10.5005/jp-journals-10005-1718
    Aim and objective: The aim of this study was to evaluate and compare the antifungal efficacy of MTA Fillapex, Metapex, zinc oxide eugenol cement, Endomethasone, and Endoflas against Candida albicans.

    Materials and methods: Root canal exudates of 30 patients were tested against MTA Fillapex (Angelus), Metapex (BioMed), zinc oxide eugenol (Deepak Enterprise), Endomethasone (Septodont), Endoflas FS (Sanlor Laboratories), MTA (Angelus) (positive control), and glycerine (negative control). Children with failed endodontic cases were included in the study. Tube dilution and agar diffusion methods were used to check the antifungal efficacy of the root canal sealers. In tube dilution method, 24-well culture plates containing freshly mixed material along with Candida albicans were used. Wells containing MTA (Angelus) along with Sabouraud dextrose agar and Candida albicans served as positive control while glycerine along with Sabouraud dextrose agar and Candida albicans served as negative control. All plates were incubated at 37°C for 24 hours. Growth of the fungi was monitored after 24 hours by the presence of the turbidity. The samples were recultured to test the experimental material using agar well diffusion method, and the Petri plates were incubated for 24 hours and 72 hours. Zone of inhibition was measured after respective time period. Paired t test was used for the data analysis.

    Results: It was seen in tube dilution method Endomethasone showed least turbidity while maximum was shown by Metapex; similar results were seen in case of agar well diffusion method in which largest zone of inhibition was shown by Endomethasone while smallest was by Metapex.

    Conclusion: It was concluded that Endomethasone showed maximum efficacy against Candida albicans as compared to Metapex.

    How to cite this article: Singh S, Srivastava B, Gupta K, et al. Comparative Evaluation of Antifungal Efficacy of Five Root Canal Sealers against Clinical Isolates of Candida albicans: A Microbiological Study. Int J Clin Pediatr Dent 2020;13(2):119-123.

    Matched MeSH terms: Eugenol; Zinc Oxide-Eugenol Cement
  14. Ravivarman C, Jeyasenthil A, Ajay R, Nilofernisha N, Karthikeyan R, Rajkumar D
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S73-S77.
    PMID: 33149434 DOI: 10.4103/jpbs.JPBS_21_20
    Background: Eugenol released from zinc oxide eugenol (ZOE)-based sealants may cause irritation to the periapical tissues and has cytotoxic potential. Ozone therapy has numerous clinical applications with humans because of its bactericidal action, detoxifying effect, stimulation of angiogenesis, and wound-healing capacity. Therefore ozone can be incorporated in ZOE sealer to exploit these properties.

    Materials and Methods: Eugenol was ozonated using ozonator machine and the samples were divided into two groups: Group I: zinc oxide eugenol (n = 10) and Group II: zinc oxide-ozonated eugenol (OZOE; n = 10). The pH of the fresh sealer samples and the set samples was measured using calibrated pH meter after predetermined time intervals. Cytotoxicity of the set sealer was evaluated on mouse L929 fibroblasts using cellular metabolic assay.

    Results: pH of the samples in Group II was higher when compared to Group I. Group II showed higher cell viability than the Group I.

    Conclusion: OZOE sealers can be used as an alternative to the conventional ZOE sealers.

    Matched MeSH terms: Eugenol; Zinc Oxide-Eugenol Cement
  15. Hee AK, Ooi YS, Wee SL, Tan KH
    Zookeys, 2015.
    PMID: 26798265 DOI: 10.3897/zookeys.540.6099
    Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world's most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species' positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males' sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis.
    Matched MeSH terms: Eugenol
  16. Mandal D, Sarkar T, Chakraborty R
    Appl Biochem Biotechnol, 2023 Feb;195(2):1319-1513.
    PMID: 36219334 DOI: 10.1007/s12010-022-04132-y
    Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
    Matched MeSH terms: Eugenol
  17. Ridzuan, P.M., Nasir Mohamad, Salwani Ismail, Nor Iza A. Rahman, Hairul Aini H., Zunariah, B., et al.
    MyJurnal
    Hydroxychavicol (HC) is a phenolic compound of betel leaf (Piper betle). It has been reported to have antifungal properties against dermatophytes including T. rubrum. The aim of this study was to identify the effects of the HC against T. rubrum. Broth dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the HC. Microscopic study of the treated fungus was done by transmission electron microscope (TEM). Cytotoxicity study using pre-adipocyte (3T3-L1) cell line was performed by means of MTT cell proliferation assay. The MIC and MFC results of the HC were both 0.49 µg/ml. Microscopic study revealed the destruction of the fungal cell wall and organelles. Cytotoxicity study showed HC to be non-toxic to the tested human cell line. In conclusion, HC may potentially be used as an alternative therapeutic agent against T. rubrum infections.
    Matched MeSH terms: Eugenol
  18. Zainol NA, Ming TS, Darwis Y
    Indian J Pharm Sci, 2015 12 15;77(4):422-33.
    PMID: 26664058 DOI: 10.4103/0250-474x.164785
    Cinnamon leaf oil contains a high percentage of eugenol and has antimicrobial, antioxidant and antiinflammatory properties. However, the undiluted oil can cause irritation to the skin. Therefore, the aims of this study were to develop and evaluate cinnamon leaf oil nanocream using palm oil. Nanocream base was prepared using different ratios of oil, surfactants and water. The surfactant used were mixture of Tween 80:Carbitol or Tween 80:Span 65 at different hydrophile-lipophile balance values. The pseudoternary phase diagrams were constructed to identify the nanocream base areas and the results showed that the nanocream bases using Span 65 as co-surfactant produced bigger cream area. Fifteen formulations using mixtures of Tween 80:Span 65 were further evaluated for accelerated stability test, droplet size, zeta potential, rheological properties and apparent viscosity. The nanocream base which had an average droplet size of 219 nm and had plastic flow with thixotropic behavior was selected for incorporation of 2% cinnamon leaf oil. The nanocream containing cinnamon leaf oil had the average size of 286 nm and good rheological characteristics. The in vitro release study demonstrated that eugenol as the main constituent of cinnamon leaf oil was released for about 81% in 10 h. The short-term stability study conducted for 6 months showed that the cinnamon leaf oil nanocream was stable at a temperature of 25° and thus, cinnamon leaf oil nanocream is a promising natural based preparation to be used for topical application.
    Matched MeSH terms: Eugenol
  19. Rusmah M, Rahim ZH
    ASDC J Dent Child, 1992 Mar-Apr;59(2):108-10.
    PMID: 1583191
    The medicaments used in this study were buffered glutaraldehyde and formocresol. Schiff's reagent was used in the quantification of aldehyde released into the collecting medium. The results of this study clearly show that formocresol diffused throughout the dentine and cementum within fifteen minutes following a pulpotomy procedure, whereas no diffusion of buffered glutaraldehyde was observed.
    Matched MeSH terms: Zinc Oxide-Eugenol Cement/therapeutic use
  20. Lai WH, Mohamad Yusof Maskat
    Sains Malaysiana, 2018;47:2699-2704.
    This study was carried out to determine the effects of hydroxy propyl methyl cellulose (HPMC) on the flavour compounds
    (eugenol and limonene), moisture and oil content in chicken nuggets during frying. Chicken nugget added with 500
    ppm eugenol and limonene were coated with HPMC solution (0, 0.75 and 1.5%) and then with a commercial coating
    (ADABI, Malaysia). Chicken nuggets were fried at 180o
    C for 4 min. Quantity of eugenol and limonene in the substrate
    (chicken meat) and coating were measured alongwith the moisture and oil content. The results showed that 0.75 and
    1.5% HPMC were not able to retain either eugenol or limonene in both substrate and coating portion of the nuggets
    when compared to control except for eugenol in the substrate portion when using 1.5% HPMC. Application of HPMC
    also resulted in reduced moisture loss and oil absorption. The reduced moisture loss and oil absorption in the coating
    and substrate of the chicken nuggets showed that HPMC was able to form a barrier that restricted the migration of
    moisture from the nuggets and absorption of oil into the nuggets. However, only the 1.5% HPMC barrier formed was
    able to reduce the loss of eugenol in the nugget substrate. Both 0.75 and 1.5% HPMC was not able to significantly
    reduce the loss of limonene during frying.
    Matched MeSH terms: Eugenol
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links