Displaying all 3 publications

Abstract:
Sort:
  1. Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M
    PLoS One, 2016;11(8):e0161707.
    PMID: 27560927 DOI: 10.1371/journal.pone.0161707
    Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
    Matched MeSH terms: Farnesol/analogs & derivatives
  2. Zifruddin AN, Mohamad-Khalid KA, Suhaimi SA, Mohamed-Hussein ZA, Hassan M
    Biosci Biotechnol Biochem, 2021 Jun 24;85(7):1628-1638.
    PMID: 33890631 DOI: 10.1093/bbb/zbab072
    Juvenile hormone III (JH III) plays an important role in insect reproduction, development, and behavior. The second branch of JH III production includes oxidation of farnesol to farnesal by farnesol dehydrogenase. This study reported the identification and characterization of Plutella xylostella farnesol dehydrogenase (PxFoLDH). Our results showed that PxFoLDH belongs to the short-chain dehydrogenase/reductase superfamily, consisting of a single domain with a structurally conserved Rossman fold, an NAD(P) (H)-binding region and a structurally diverse C-terminal region. The purified enzyme displayed maximum activity at 55$\ $°C with pH 9.5 and was stable in the temperature below 70$\ ^\circ $C. PxFoLDH was determined to be a monomer with a relative molecular weight of 27 kDa and highly specific for trans, trans-farnesol, and NADP+. Among analog inhibitors tested, farnesyl acetate was the most effective inhibitor with the lowest Ki value of 0.02 µm. Our findings showed this purified enzyme may represent as NADP+-farnesol dehydrogenase.
    Matched MeSH terms: Farnesol/analogs & derivatives
  3. Rahman NK, Kamaruddin AH, Uzir MH
    Bioprocess Biosyst Eng, 2011 Aug;34(6):687-99.
    PMID: 21327986 DOI: 10.1007/s00449-011-0518-y
    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
    Matched MeSH terms: Farnesol/analogs & derivatives*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links