Displaying publications 1 - 20 of 700 in total

Abstract:
Sort:
  1. Taher M, Mohamed Amiroudine MZ, Tengku Zakaria TM, Susanti D, Ichwan SJ, Kaderi MA, et al.
    PMID: 25873982 DOI: 10.1155/2015/740238
    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[(3)H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.
    Matched MeSH terms: Fatty Acids, Nonesterified
  2. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Sarsaifi K, et al.
    Anim. Reprod. Sci., 2015 Feb;153:1-7.
    PMID: 25544152 DOI: 10.1016/j.anireprosci.2014.12.001
    The present study was conducted to determine the effects of supplementing α-linolenic acid (ALA) into BioXcell(®) extender on post-cooling, post-thawed bovine spermatozoa and post thawed fatty acid composition. Twenty-four semen samples were collected from three bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility using computer assisted semen analyzer (CASA) whereas morphology and viability with eosin-nigrosin stain. Semen samples extended into BioXcell(®) were divided into five groups to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were incubated at 37°C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5°C. After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and frozen-thawed semen showed that the percentages of all the sperm parameters improved with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell(®) extender improved the cooled and frozen-thawed quality of bull spermatozoa.
    Matched MeSH terms: Fatty Acids/analysis
  3. Sin Teh S, Ong ASH, Choo YM, Mah SH
    J Oleo Sci, 2018;67(6):697-706.
    PMID: 29863090 DOI: 10.5650/jos.ess18009
    Saturated fats are commonly claimed to raise human blood cholesterols and contribute to cardiovascular disease. Previous literature data were highlighted that although palm oil is 50% saturated, it does not behave like a saturated fat. Human trials were conducted to compare the effects on serum cholesterol levels given by palm olein and monounsaturated oils. It was postulated that saturation/unsaturation of the fatty acids situated at sn-2 positions of triglycerides in the fat molecules determine the induced blood lipid levels but not the overall saturation of oils. The results showed that the lipid parameters (LDL and HDL) effects induced by these oils are similar with no significant differences. This study provides concrete evidence that the unsaturation levels of these oils at sn-2 position of TG are similar (90-100%) which are claimed to be responsible for the lipid parameters. In conclusion, the public negative perception on believing that the overall saturation of oils is detrimental to health should be corrected because in fact the unsaturation at sn-2 positions of the saturated vegetable fat such as palm olein and cocoa butter make them behave like mono-unsaturated oils, unlike saturated animal fats that possess a high content of saturated fatty acids at sn-2 position.
    Matched MeSH terms: Fatty Acids/adverse effects; Fatty Acids, Unsaturated
  4. Koo HC, Kaur S, Chan KQ, Soh WH, Ang YL, Chow WS, et al.
    J Hum Nutr Diet, 2020 10;33(5):670-677.
    PMID: 32250007 DOI: 10.1111/jhn.12753
    INTRODUCTION: Little is known about the relationship of whole-grain intake with dietary fatty acids intake. The present study aimed to assess the whole-grain intake and its relationships with dietary fatty acids intake among multiethnic schoolchildren in Kuala Lumpur, Malaysia.

    METHODS: This cross-sectional study was conducted among 392 schoolchildren aged 9-11 years, cluster sampled from five randomly selected schools in Kuala Lumpur. Whole-grain and fatty acids intakes were assessed by 3-day, 24-h diet recalls. All whole-grain foods were considered irrespective of the amount of whole grain they contained.

    RESULTS: In total, 55.6% (n = 218) were whole-grain consumers. Mean (SD) daily intake of whole grain in the total sample was 5.13 (9.75) g day-1 . In the whole-grain consumer's only sample, mean (SD) intakes reached 9.23 (11.55) g day-1 . Significant inverse associations were found between whole-grain intake and saturated fatty acid (SAFA) intake (r = -0.357; P 

    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids, Monounsaturated/analysis; Fatty Acids, Unsaturated/analysis
  5. Jankovic N, Geelen A, Streppel MT, de Groot LC, Kiefte-de Jong JC, Orfanos P, et al.
    Am J Clin Nutr, 2015 Oct;102(4):745-56.
    PMID: 26354545 DOI: 10.3945/ajcn.114.095117
    BACKGROUND: Cardiovascular disease (CVD) represents a leading cause of mortality worldwide, especially in the elderly. Lowering the number of CVD deaths requires preventive strategies targeted on the elderly.

    OBJECTIVE: The objective was to generate evidence on the association between WHO dietary recommendations and mortality from CVD, coronary artery disease (CAD), and stroke in the elderly aged ≥60 y.

    DESIGN: We analyzed data from 10 prospective cohort studies from Europe and the United States comprising a total sample of 281,874 men and women free from chronic diseases at baseline. Components of the Healthy Diet Indicator (HDI) included saturated fatty acids, polyunsaturated fatty acids, mono- and disaccharides, protein, cholesterol, dietary fiber, and fruit and vegetables. Cohort-specific HRs adjusted for sex, education, smoking, physical activity, and energy and alcohol intakes were pooled by using a random-effects model.

    RESULTS: During 3,322,768 person-years of follow-up, 12,492 people died of CVD. An increase of 10 HDI points (complete adherence to an additional WHO guideline) was, on average, not associated with CVD mortality (HR: 0.94; 95% CI: 0.86, 1.03), CAD mortality (HR: 0.99; 95% CI: 0.85, 1.14), or stroke mortality (HR: 0.95; 95% CI: 0.88, 1.03). However, after stratification of the data by geographic region, adherence to the HDI was associated with reduced CVD mortality in the southern European cohorts (HR: 0.87; 95% CI: 0.79, 0.96; I(2) = 0%) and in the US cohort (HR: 0.85; 95% CI: 0.83, 0.87; I(2) = not applicable).

    CONCLUSION: Overall, greater adherence to the WHO dietary guidelines was not significantly associated with CVD mortality, but the results varied across regions. Clear inverse associations were observed in elderly populations in southern Europe and the United States.

    Matched MeSH terms: Fatty Acids/administration & dosage; Fatty Acids, Unsaturated
  6. Thevarajoo S, Selvaratnam C, Goh KM, Hong KW, Chan XY, Chan KG, et al.
    Int J Syst Evol Microbiol, 2016 Sep;66(9):3662-3668.
    PMID: 27334651 DOI: 10.1099/ijsem.0.001248
    A Gram-staining-negative, aerobic, yellow-orange-pigmented, rod-shaped bacterium designated D-24T was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24T is affiliated with the genus Vitellibacter. It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: Vitellibactervladivostokensis KMM 3516T (99.5 %), Vitellibactersoesokkakensis RSSK-12T (97.3 %), VitellibacterechinoideorumCC-CZW007T (96.9 %), VitellibacternionensisVBW088T (96.7 %) and Vitellibacteraestuarii JCM 15496T (96.3 %). DNA-DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24T versus V.vladivostokensisKMM 3516T exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24T showed an even lower ANI value of 80.88 % with V. soesokkakensis RSSK-12T. The major menaquinone of strain D-24T was MK-6, and the predominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. Strain D-24T contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus Vitellibacter. The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA-DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24T represents a novel species of the genus Vitellibacter, for which the name Vitellibacter aquimaris sp. nov. is proposed. The type strain is D-24T (=KCTC 42708T=DSM 101732T).
    Matched MeSH terms: Fatty Acids/chemistry
  7. Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, et al.
    Antonie Van Leeuwenhoek, 2018 Jul;111(7):1105-1115.
    PMID: 29299771 DOI: 10.1007/s10482-017-1013-5
    Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
    Matched MeSH terms: Fatty Acids/metabolism; Fatty Acids/chemistry
  8. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Fatty Acids, Volatile/biosynthesis
  9. Abd Razak RA, Ahmad Tarmizi AH, Abdul Hammid AN, Kuntom A, Ismail IS, Sanny M
    PMID: 31437078 DOI: 10.1080/19440049.2019.1654139
    This study was conducted to investigate on the effect of different sampling regions of palm-refined oils and fats on the 2- and 3-monochloropropanediol fatty acid esters (MCPDE) and glycidol fatty acid esters (GE) levels. The American Oil Chemists' Society (AOCS) Official Method Cd 29a-13 on the determination of MCPDE and GE in edible oils and fats by acid transesterification was successfully verified and optimised, with slight modification using 7890A Agilent GC system equipped with 5975C quadrupole detector. The determined limits of detection (LOD) for MCPDE were 0.02 mg kg-1 and 0.05 mg kg-1 for GE. The method performance has showed good recovery between 80% and 120% for all pertinent compounds with seven replicates assayed in three separate days. Round robin test with two European laboratories, i.e. Eurofins and SGS, has shown compliance results with those of the present study. Among the sampling regions, only one refinery located in the central region of Malaysia showed a significant increment of the MCPDE and GE levels after refining process. The GE level averaging at 2.5 mg kg-1 was slightly higher than that of 3-MCPDE averaging at 1.3 mg kg-1. Both esters were preferentially partitioned into the liquid phase rather than the solid phase after fractionation. However, the overall results exhibited no direct correlation between the esters content and the different sampling locations of the palm oil products in Malaysia. Analysis of total chlorine content also displayed significant variations between sampling locations which clearly show its effect on the chlorine content in the CPO samples.
    Matched MeSH terms: Fatty Acids/analysis
  10. Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, Al Awadh AA, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431794 DOI: 10.3390/molecules27227693
    Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
    Matched MeSH terms: Fatty Acids/chemistry; Fatty Acids, Unsaturated
  11. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
    Matched MeSH terms: Fatty Acids/chemistry
  12. Tee LH, Yang B, Tey BT, Chan ES, Azlan A, Ismail A, et al.
    Food Chem, 2017 Nov 15;235:257-264.
    PMID: 28554634 DOI: 10.1016/j.foodchem.2017.05.021
    Dacryodes rostrata (kembayau) is an important food and oil resource for local communities in Borneo, but it is not commonly known to wider community. The objective of this work is to valorize kembayau fruit by evaluating the characteristics of the oil from the fruit. In this study, the physicochemical characteristics and the lipophilic essential nutrient; the fatty acid composition, vitamin E and beta-carotene content of oils obtained from the peel, pulp and seeds of kembayau fruits were studied. The pulp of the kembayau fruit contained highest proportion of oil, followed by peel and seed. Kembayau fruit contained vitamin E and had trace amount of beta-carotene. Besides, kembayau fruit oils were not toxic to BRL3A cells, provided hepatoprotection and reversed lipid peroxidation in paracetamol-induced toxicity. Our results suggest that kembayau can be a potential source for cooking oil as the physicochemical characteristics are comparable with commercial source such as oil palm.
    Matched MeSH terms: Fatty Acids
  13. Qamaruz-Zaman N, Milke MW
    Waste Manag, 2012 Dec;32(12):2426-30.
    PMID: 22819598 DOI: 10.1016/j.wasman.2012.06.023
    Research was conducted to determine suitable chemical parameters as indicators of odor from decomposing food wastes. Prepared food scraps were stored in 18 l plastic buckets (2 kg wet weight each) at 20 °C and 8 °C to reproduce high and low temperature conditions. After 1, 3, 7, 10 and 14 days of storage, the odor from the buckets were marked to an intensity scale of 0 (no odor) to 5 (intense) and the corresponding leachate analyzed for volatile fatty acids, ammonia and total organic carbon. A linear relationship between odor intensity and the measured parameter indicates a suitable odor indicator. Odor intensified with longer storage period and warmer surroundings. The study found ammonia and isovaleric acid to be promising odor indicators. For this food waste mixture, offensive odors were emitted if the ammonia and isovaleric acid contents exceeded 360 mg/l and 940 mg/l, respectively.
    Matched MeSH terms: Fatty Acids, Volatile/chemistry*
  14. Van Thuoc D, My DN, Loan TT, Sudesh K
    Int J Biol Macromol, 2019 Dec 01;141:885-892.
    PMID: 31513855 DOI: 10.1016/j.ijbiomac.2019.09.063
    A moderately halophilic bacterium isolated from fermenting shrimp paste, Salinivibrio sp. M318 was found capable of using fish sauce and mixtures of waste fish oil and glycerol as nitrogen and carbon sources, respectively, for poly(3-hydroxybutyrate) (PHB) production. A cell dry weight (CDW) of up to 10 g/L and PHB content of 51.7 wt% were obtained after 48 h of cultivation in flask experiment. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] was synthesized when 1,4-butanediol, γ-butyrolactone, or sodium 4-hydroxybutyrate was added as precursors to the culture medium. The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was achieved by supplying precursors such as sodium valerate, sodium propionate, and sodium heptanoate. Salinivibrio sp. M318 was able to accumulate the above mentioned PHAs during the growth phase. High CDW of 69.1 g/L and PHB content of 51.5 wt% were obtained by strain Salinivibrio sp. M318 after 78 h of cultivation in fed-batch culture. The results demonstrate Salinivibrio sp. M318 to be a promising wild-type bacterium for the production of PHA from aquaculture residues.
    Matched MeSH terms: Fatty Acids/analysis
  15. Khayoon MS, Olutoye MA, Hameed BH
    Bioresour Technol, 2012 May;111:175-9.
    PMID: 22405756 DOI: 10.1016/j.biortech.2012.01.177
    Methyl esters were synthesized from crude karanj oil (CKO) by single step esterification with methanol using sulfuric acid (H(2)SO(4)) and phosphoric acid (H(3)PO(4)) as catalysts in a homogeneous batch process. H(3)PO(4) was less active than H(2)SO(4) during the process as it presented very low ester yields (<20%) for the various molar ratios of fatty acid to alcohol studied. With H(2)SO(4) as catalyst, the yield was as high as 89.8% at 65°C after 5h. The fatty acids profile of the oil (palmitic acid: ≈ 12%; stearic acid: ≈ 8%; oleic acid: ≈ 52% and linolenic acid of 17%) and the different reactivities of the acids were responsible for the observed differences in conversion to methyl esters. The findings attained with this study might contribute to the economic utilization of a non-edible feedstock.
    Matched MeSH terms: Fatty Acids/chemical synthesis*; Fatty Acids/chemistry
  16. Jinap S, Ali AA, Man YB, Suria AM
    Int J Food Sci Nutr, 2000 Nov;51(6):489-99.
    PMID: 11271851
    Dark chocolates filled with palm mid-fraction (PMF) were stored at different temperatures to evaluate the physical and chemical changes. Storage at low temperature (18 degrees C) reduces the PMF migration to negligible extent. Higher storage temperatures (30 and 35 degrees C) increased the PMF migration from the filling centre into the chocolate coating. As a consequence of fat migration, fatty acid composition, triglyceride composition, hardness, solid fat content, melting point and polymorphic structure changed, leading to bloom formation, which started by fat migration and was influenced by recrystallization tendency within the chocolate coating.
    Matched MeSH terms: Fatty Acids/analysis
  17. Marikkar JM, Rana S
    J Oleo Sci, 2014;63(9):867-73.
    PMID: 25174673
    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
    Matched MeSH terms: Fatty Acids, Monounsaturated/chemistry*
  18. Ramli US, Baker DS, Quant PA, Harwood JL
    Biochem Soc Trans, 2002 Nov;30(Pt 6):1043-6.
    PMID: 12440968
    Control analysis is a powerful method to quantify the regulation of metabolic pathways. We have applied it to lipid biosynthesis for the first time by using model tissue culture systems from the important oil crops, olive ( Olea europaea L.) and oil palm ( Elaeis guineensis Jacq.). By the use of top-down control analysis, fatty acid biosynthesis has been shown to exert more control than lipid assembly under different experimental conditions. However, both parts of the lipid biosynthetic pathway are important, so that attempts to alter oil yield by manipulating the activity of a single enzyme step are very unlikely to produce significant increases.
    Matched MeSH terms: Fatty Acids/metabolism
  19. Viecelli AK, Pascoe EM, Polkinghorne KR, Hawley CM, Paul-Brent PA, Badve SV, et al.
    Nephrology (Carlton), 2017 10;22(10):823-824.
    PMID: 27188542 DOI: 10.1111/nep.12823
    Matched MeSH terms: Fatty Acids, Omega-3*
  20. Razaif-Mazinah MRM, Anis SNS, Harun HI, Rashid KA, Annuar MSM
    Biotechnol Appl Biochem, 2017 Mar;64(2):259-269.
    PMID: 26800648 DOI: 10.1002/bab.1482
    Pseudomonas putida Bet001 and Delftia tsuruhatensis Bet002, isolated from palm oil mill effluent, accumulated poly(3-hydroxyalkanoates) (PHAs) when grown on aliphatic fatty acids, sugars, and glycerol. The substrates were supplied at 20:1 C/N mole ratio. Among C-even n-alkanoic acids, myristic acid gave the highest PHA content 26 and 28 wt% in P. putida and D. tsuruhatensis, respectively. Among C-odd n-alkanoic acids, undecanoic gave the highest PHA content at 40 wt% in P. putida and 46 wt% in D. tsuruhatensis on pentadecanoic acid. Sugar and glycerol gave <10 wt% of PHA content for both bacteria. Interestingly, D. tsuruhatensis accumulated both short- and medium-chain length PHA when supplied with n-alkanoic acids ranging from octanoic to lauric, sucrose, and glycerol with 3-hydroxybutyrate as the major monomer unit. In P. putida, the major hydroxyalkanoates unit was 3-hydroxyoctanoate and 3-hydroxydecanoate when grown on C-even acids. Conversely, 3-hydroxyheptanoate, 3-hydrxoynonanoate, and 3-hydroxyundecanoate were accumulated with C-odd acids. Weight-averaged molecular weight (Mw ) was in the range of 53-81 kDa and 107-415 kDa for P. putida and D. tsuruhatensis, respectively. Calorimetric analyses indicated that both bacteria synthesized semicrystalline polymer with good thermal stability with degradation temperature (Td ) ranging from 178 to 282 °C.
    Matched MeSH terms: Fatty Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links