Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
    Matched MeSH terms: Fatty Acids/chemistry
  2. Abuelfatah K, Zakaria MZ, Meng GY, Sazili AQ
    ScientificWorldJournal, 2014;2014:934154.
    PMID: 25478601 DOI: 10.1155/2014/934154
    The effects of feeding different levels of whole linseed on fatty acid (FA) composition of muscles and adipose tissues of goat were investigated. Twenty-four Crossed Boer bucks were assigned randomly into three treatment diets: L0, L10, or L20, containing 0%, 10%, or 20% whole linseed, respectively. The goats were slaughtered after 110 days of feeding. Samples from the longissimus dorsi, supraspinatus, semitendinosus, and subcutaneous fat (SF) and perirenal fat (PF) were taken for FA analyses. In muscles, the average increments in α-linolenic (ALA) and total n-3 PUFA were 6.48 and 3.4, and 11.48 and 4.78 for L10 and L20, respectively. In the adipose tissues, the increments in ALA and total n-3 PUFA were 3.07- and 6.92-fold and 3.00- and 7.54-fold in SF and PF for L10 and L20, respectively. The n-6 : n-3 ratio of the muscles was decreased from up to 8.86 in L0 to 2 or less in L10 and L20. The PUFA : SFA ratio was increased in all the tissues of L20 compared to L0. It is concluded that both inclusion levels (10% and 20%) of whole linseed in goat diets resulted in producing meat highly enriched with n-3 PUFA with desirable n-6 : n-3 ratio.
    Matched MeSH terms: Fatty Acids/chemistry
  3. Ahmad R, Lim CK, Marzuki NF, Goh YK, Azizan KA, Goh YK, et al.
    Molecules, 2020 Dec 16;25(24).
    PMID: 33339375 DOI: 10.3390/molecules25245965
    In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.
    Matched MeSH terms: Fatty Acids/chemistry*
  4. Ahmad Tarmizi AH, Niranjan K, Gordon M
    Food Chem, 2013 Jan 15;136(2):902-8.
    PMID: 23122143 DOI: 10.1016/j.foodchem.2012.08.001
    The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.
    Matched MeSH terms: Fatty Acids/chemistry
  5. Ai H, Lee YY, Xie X, Tan CP, Ming Lai O, Li A, et al.
    Food Chem, 2023 Jun 30;412:135558.
    PMID: 36716631 DOI: 10.1016/j.foodchem.2023.135558
    Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the β' to the β form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.
    Matched MeSH terms: Fatty Acids/chemistry
  6. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2009;58(9):467-71.
    PMID: 19654456
    N,N'-Carbonyl difatty amides (CDFAs) have been synthesized from palm oil using sodium ethoxide as catalyst. Ethyl fatty esters (EFEs) were produced as a by-product as well as glycerol. The synthesis was carried out by reflux palm oil and urea in presence of ethanol. In this process, palm oil gave 79% pure CDFAs after 8 hours and molar ratio of urea to palm oil was 6.2: 1 at 78 degrees C. Both CDFAs and EFEs have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Fatty Acids/chemistry*
  7. Al-Zuhair S
    Biotechnol Prog, 2005 Sep-Oct;21(5):1442-8.
    PMID: 16209548
    Kinetics of production of biodiesel by enzymatic methanolysis of vegetable oils using lipase has been investigated. A mathematical model taking into account the mechanism of the methanolysis reaction starting from the vegetable oil as substrate, rather than the free fatty acids, has been developed. The kinetic parameters were estimated by fitting the experimental data of the enzymatic reaction of sunflower oil by two types of lipases, namely, Rhizomucor miehei lipase (RM) immobilized on ion-exchange resins and Thermomyces lanuginosa lipase (TL) immobilized on silica gel. There was a good agreement between the experimental results of the initial rate of reaction and those predicted by the proposed model equations, for both enzymes. From the proposed model equations, the regions where the effect of alcohol inhibition fades, at different substrate concentrations, were identified. The proposed model equation can be used to predict the rate of methanolysis of vegetable oils in a batch or a continuous reactor and to determine the optimal conditions for biodiesel production.
    Matched MeSH terms: Fatty Acids/chemistry*
  8. Ali MK, Moshikur RM, Wakabayashi R, Tahara Y, Moniruzzaman M, Kamiya N, et al.
    J Colloid Interface Sci, 2019 Sep 01;551:72-80.
    PMID: 31075635 DOI: 10.1016/j.jcis.2019.04.095
    Ionic liquid (IL) surfactants have attracted great interest as promising substitutes for conventional surfactants owing to their exceptional and favorable physico-chemical properties. However, most IL surfactants are not eco-friendly and form unstable micelles, even when using a high concentration of the surfactant. In this study, we prepared a series of halogen-free and biocompatible choline-fatty-acid-based ILs with different chain lengths and degrees of saturation, and we then investigated their micellar properties in aqueous solutions. Characterization of the synthesized surface-active ILs (SAILs) was performed by 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. The surface-active properties of the SAILs were investigated by tensiometry, conductometry, and dynamic light scattering measurements. The critical micelle concentration of the SAILs was found to be 2-4 times lower than those of conventional surfactants. The thermodynamic properties of micellization (ΔG0m, ΔH0m, and ΔS0m) indicate that the micellization process of the SAILs is spontaneous, stable, and entropy-driven at room temperature. The cytotoxicity of the SAILs was evaluated using mammalian cell line NIH 3T3. Importantly, [Cho][Ole] shows lower toxicity than the analogous ILs with conventional surfactants. These results clearly suggest that these environmentally friendly SAILs can be used as a potential alternative to conventional ILs for various purposes, including biological applications.
    Matched MeSH terms: Fatty Acids/chemistry*
  9. Amrina RA, Furusawa G, Lau NS
    Int J Syst Evol Microbiol, 2021 Nov;71(11).
    PMID: 34752210 DOI: 10.1099/ijsem.0.005087
    A novel rod-shaped, Gram-stain-negative, strictly aerobic and alginate-degrading marine bacterium, designated CCB-QB4T, was isolated from a surface of algal turf collected from a coastal area of Penang, Malaysia. The cells showed motility by a lateral flagellum. The rod-shaped cells formed long chains end-to-end. Phylogenetic analysis based on the 16S rRNA gene sequence of strain CCB-QB4T showed 94.07, 92.69, 91.52 and 90.90 % sequence similarity to Algibacillus agarilyticus RQJ05T, Catenovulum maritimum Q1T, Catenovulum agarivorans YM01T and Catenovulum sediminis D2T, respectively. Strain CCB-QB4T formed a cluster with A. agarilyticus RQJ05T. Strain CCB-QB4T was catalase-negative, oxidase-positive, and degraded agar, alginate, and starch. Cell growth was observed at 15-40 °C, at pH 7.0-10.0 and in the presence of 1-6 % (w/v) NaCl and glucose. The major fatty acids were summed feature 3 (C16 : 1 ω7c/iso-C15 : 0 2-OH), C16 : 0 and C18 : 1 ω7c. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, two unidentified glycolipids, an unidentified phospholipid and unidentified lipid. The major respiratory quinone was ubiquinone-8. The genomic DNA G+C content was 46.7 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain CCB-BQ4T represents a novel species in a new genus, for which the name Saccharobesus litoralis gen. nov., sp. nov. is proposed. The type strain is CCB-QB4T (=JCM 33513T=CCB-MBL 5008T).
    Matched MeSH terms: Fatty Acids/chemistry
  10. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Apr;190(4):1438-1456.
    PMID: 31782088 DOI: 10.1007/s12010-019-03182-z
    In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67-0.83 g L-1), oil content (30.99-38.08%) and the duration for cells to reach stationary phase (25-27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L-1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.
    Matched MeSH terms: Fatty Acids/chemistry*
  11. Arai T, Amalina R, Bachok Z
    Biol Res, 2015;48:13.
    PMID: 25762238 DOI: 10.1186/s40659-015-0004-0
    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea.
    Matched MeSH terms: Fatty Acids/chemistry*
  12. Asem MD, Salam N, Idris H, Zhang XT, Bull AT, Li WJ, et al.
    Int J Syst Evol Microbiol, 2020 May;70(5):3210-3218.
    PMID: 32320378 DOI: 10.1099/ijsem.0.004158
    The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2-94.9 %) and in silico DNA-DNA hybridization (52.5-62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.
    Matched MeSH terms: Fatty Acids/chemistry
  13. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2012 Oct 08;17(10):11748-62.
    PMID: 23044712 DOI: 10.3390/molecules171011748
    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.
    Matched MeSH terms: Fatty Acids/chemistry*
  14. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Fatty Acids/chemistry
  15. Boukraâ L, Sulaiman SA
    Recent Pat Antiinfect Drug Discov, 2009 Nov;4(3):206-13.
    PMID: 19673699
    Honey and other bee products were subjected to laboratory and clinical investigations during the past few decades and the most remarkable discovery was their antibacterial activity. Honey has been used since ancient times for the treatment of some diseases and for the healing of wounds but its use as an anti-infective agent was superseded by modern dressings and antibiotic therapy. However, the emergence of antibiotic resistant strains of bacteria has confounded the current use of antibiotic therapy leading to the re-examination of former remedies. Honey, propolis, royal jelly and bee venom have a strong antibacterial activity. Even antibiotic-resistant strains such as epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycine resistant Enterococcus (VRE) have been found to be as sensitive to honey as the antibiotic-sensitive strains of the same species. Sensitivity of bacteria to bee products varies considerably within the product and the varieties of the same product. Botanical origin plays a major role in its antibacterial activity. Propolis has been found to have the strongest action against bacteria. This is probably due to its richness in flavonoids. The most challenging problems of using hive products for medical purposes are dosage and safety. Honey and royal jelly produced as a food often are not well filtered, and may contain various particles. Processed for use in wound care, they are passed through fine filters which remove most of the pollen and other impurities to prevent allergies. Also, although honey does not allow vegetative bacteria to survive, it does contain viable spores, including clostridia. With the increased availability of licensed medical stuffs containing bee products, clinical use is expected to increase and further evidence will become available. Their use in professional care centres should be limited to those which are safe and with certified antibacterial activities. The present article is a short review of recent patents on antibiotics of hives.
    Matched MeSH terms: Fatty Acids/chemistry
  16. Chantavorakit T, Muangham S, Aaron TWF, Duangmal K, Hong K
    Int J Syst Evol Microbiol, 2023 Nov;73(11).
    PMID: 37994910 DOI: 10.1099/ijsem.0.006177
    The taxonomic position of two novel Actinoallomurus strains isolated from rhizosphere soil of wild rice (Oryza rufipogon Griff.) was established using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WRP6H-15T and WRP9H-5T were closely related to Actinoallomurus spadix JCM 3146T and Actinoallomurus purpureus TTN02-30T. Chemotaxonomic and morphological characteristics of both strains were consistent with members of the genus Actinoallomurus, while phenotypic properties, genome-based comparisons and phylogenomic analyses distinguished strains WRP6H-15T and WRP9H-5T from their closest phylogenetic relatives. The two strains showed nearly identical 16S rRNA gene sequences (99.9 %). Strain WRP6H-15T showed 68.7 % digital DNA-DNA hybridization, 95.9 % average nucleotide identity (ANI) based on blast and 96.4 % ANI based on MUMmer to strain WRP9H-5T. A phylogenomic tree based on draft genome sequences of the strains and representative of the genus Actinoallomurus confirmed the phylogenetic relationships. The genomes sizes of strains WRP6H-15T and WRP9H-5T were 9.42 Mb and 9.68 Mb, with DNA G+C contents of 71.5 and 71.3 mol%, respectively. In silico analysis predicted that the strains contain biosynthetic gene clusters encoding for specialized metabolites. Characterization based on chemotaxonomic, phylogenetic, phenotypic and genomic evidence demonstrated that strains WRP6H-15T and WRP9H-5T represent two novel species of the genus Actinoallomurus, for which the names Actinoallomurus soli sp. nov. (type strain WRP6H-15T=TBRC 15726T=NBRC 115556T) and Actinoallomurus rhizosphaericola sp. nov. (type strain WRP9H-5T=TBRC 15727T=NBRC 115557T) are proposed.
    Matched MeSH terms: Fatty Acids/chemistry
  17. Cheong JN, Mirhosseini H, Tan CP
    Int J Food Sci Nutr, 2010 Jun;61(4):417-24.
    PMID: 20151850 DOI: 10.3109/09637481003591574
    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
    Matched MeSH terms: Fatty Acids/chemistry*
  18. Choi JY, Ko G, Jheong W, Huys G, Seifert H, Dijkshoorn L, et al.
    Int J Syst Evol Microbiol, 2013 Dec;63(Pt 12):4402-4406.
    PMID: 23950148 DOI: 10.1099/ijs.0.047969-0
    Two Gram-stain-negative, non-fermentative bacterial strains, designated 11-0202(T) and 11-0607, were isolated from soil in South Korea, and four others, LUH 13522, LUH 8638, LUH 10268 and LUH 10288, were isolated from a beet field in Germany, soil in the Netherlands, and sediment of integrated fish farms in Malaysia and Thailand, respectively. Based on 16S rRNA, rpoB and gyrB gene sequences, they are considered to represent a novel species of the genus Acinetobacter. Their 16S rRNA gene sequences showed greatest pairwise similarity to Acinetobacter beijerinckii NIPH 838(T) (97.9-98.4 %). They shared highest rpoB and gyrB gene sequence similarity with Acinetobacter johnsonii DSM 6963(T) and Acinetobacter bouvetii 4B02(T) (85.4-87.6 and 78.1-82.7 %, respectively). Strain 11-0202(T) displayed low DNA-DNA reassociation values (<40 %) with the most closely related species of the genus Acinetobacter. The six strains utilized azelate, 2,3-butanediol, ethanol and dl-lactate as sole carbon sources. Cellular fatty acid analyses showed similarities to profiles of related species of the genus Acinetobacter: summed feature 3 (C16 : 1ω7c, C16 : 1ω6c; 24.3-27.2 %), C18 : 1ω9c (19.9-22.1 %), C16 : 0 (15.2-22.0 %) and C12 : 0 (9.2-14.2 %). On the basis of the current findings, it is concluded that the six strains represent a novel species, for which the name Acinetobacter kookii sp. nov. is proposed. The type strain is 11-0202(T) ( = KCTC 32033(T) = JCM 18512(T)).
    Matched MeSH terms: Fatty Acids/chemistry
  19. Chong FC, Tey BT, Dom ZM, Ibrahim N, Rahman RA, Ling TC
    ScientificWorldJournal, 2006 Sep 07;6:1124-31.
    PMID: 16964369
    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.
    Matched MeSH terms: Fatty Acids/chemistry*
  20. Chua KO, See-Too WS, Tan JY, Song SL, Yong HS, Yin WF, et al.
    J Microbiol, 2020 Dec;58(12):988-997.
    PMID: 33095388 DOI: 10.1007/s12275-020-0325-8
    In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15-37°C (optimum, 28-30°C) and in the presence of 0-1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56-94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.
    Matched MeSH terms: Fatty Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links