Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Fayyazi E, Ghobadian B, Najafi G, Hosseinzadeh B, Mamat R, Hosseinzadeh J
    Ultrason Sonochem, 2015 Sep;26:312-20.
    PMID: 25870003 DOI: 10.1016/j.ultsonch.2015.03.007
    Biodiesel is a green (clean), renewable energy source and is an alternative for diesel fuel. Biodiesel can be produced from vegetable oil, animal fat and waste cooking oil or fat. Fats and oils react with alcohol to produce methyl ester, which is generally known as biodiesel. Because vegetable oil and animal fat wastes are cheaper, the tendency to produce biodiesel from these materials is increasing. In this research, the effect of some parameters such as the alcohol-to-oil molar ratio (4:1, 6:1, 8:1), the catalyst concentration (0.75%, 1% and 1.25% w/w) and the time for the transesterification reaction using ultrasonication on the rate of the fatty acids-to-methyl ester (biodiesel) conversion percentage have been studied (3, 6 and 9 min). In biodiesel production from chicken fat, when increasing the catalyst concentration up to 1%, the oil-to-biodiesel conversion percentage was first increased and then decreased. Upon increasing the molar ratio from 4:1 to 6:1 and then to 8:1, the oil-to-biodiesel conversion percentage increased by 21.9% and then 22.8%, respectively. The optimal point is determined by response surface methodology (RSM) and genetic algorithms (GAs). The biodiesel production from chicken fat by ultrasonic waves with a 1% w/w catalyst percentage, 7:1 alcohol-to-oil molar ratio and 9 min reaction time was equal to 94.8%. For biodiesel that was produced by ultrasonic waves under a similar conversion percentage condition compared to the conventional method, the reaction time was decreased by approximately 87.5%. The time reduction for the ultrasonic method compared to the conventional method makes the ultrasonic method superior.
    Matched MeSH terms: Fatty Acids/chemistry*
  2. Chong FC, Tey BT, Dom ZM, Ibrahim N, Rahman RA, Ling TC
    ScientificWorldJournal, 2006 Sep 07;6:1124-31.
    PMID: 16964369
    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.
    Matched MeSH terms: Fatty Acids/chemistry*
  3. Abuelfatah K, Zakaria MZ, Meng GY, Sazili AQ
    ScientificWorldJournal, 2014;2014:934154.
    PMID: 25478601 DOI: 10.1155/2014/934154
    The effects of feeding different levels of whole linseed on fatty acid (FA) composition of muscles and adipose tissues of goat were investigated. Twenty-four Crossed Boer bucks were assigned randomly into three treatment diets: L0, L10, or L20, containing 0%, 10%, or 20% whole linseed, respectively. The goats were slaughtered after 110 days of feeding. Samples from the longissimus dorsi, supraspinatus, semitendinosus, and subcutaneous fat (SF) and perirenal fat (PF) were taken for FA analyses. In muscles, the average increments in α-linolenic (ALA) and total n-3 PUFA were 6.48 and 3.4, and 11.48 and 4.78 for L10 and L20, respectively. In the adipose tissues, the increments in ALA and total n-3 PUFA were 3.07- and 6.92-fold and 3.00- and 7.54-fold in SF and PF for L10 and L20, respectively. The n-6 : n-3 ratio of the muscles was decreased from up to 8.86 in L0 to 2 or less in L10 and L20. The PUFA : SFA ratio was increased in all the tissues of L20 compared to L0. It is concluded that both inclusion levels (10% and 20%) of whole linseed in goat diets resulted in producing meat highly enriched with n-3 PUFA with desirable n-6 : n-3 ratio.
    Matched MeSH terms: Fatty Acids/chemistry
  4. Salimon J, Omar TA, Salih N
    ScientificWorldJournal, 2014;2014:906407.
    PMID: 24719581 DOI: 10.1155/2014/906407
    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.
    Matched MeSH terms: Fatty Acids/chemistry*; Trans Fatty Acids/chemistry*
  5. Sundram K, Ismail A, Hayes KC, Jeyamalar R, Pathmanathan R
    J Nutr, 1997 Mar;127(3):514S-520S.
    PMID: 9082038
    Although dietary trans fatty acids can affect plasma lipoproteins negatively in humans, no direct comparison with specific saturated fatty acids has been reported, even though trans fatty acids were designed to replace saturates in foods and food processing. In this study, dietary trans 18:1 [elaidic acid at 5.5% energy (en)] was specifically exchanged for cis 18:1, 16:0 or 12:0 + 14:0 in 27 male and female subjects consuming moderate fat (31% en), low cholesterol (<225 mg/d) whole food diets during 4-wk diet periods in a crossover design. The trans-rich fat significantly elevated total cholesterol and LDL cholesterol relative to the 16:0-rich and 18:1-rich fats and uniquely depressed HDL cholesterol relative to all of the fats tested. Trans fatty acids also elevated lipoprotein (a) [Lp(a)] values relative to all dietary treatments. Furthermore, identical effects on lipoproteins were elicited by 16:0 and cis 18:1 in these subjects. The current results suggest that elaidic acid, one of the principal trans isomers produced during industrial hydrogenation of edible oils, adversely affects plasma lipoproteins. Thus, the negative effect of elaidic acid on the lipoprotein profile of humans appears to be unmatched by any other natural fatty acid(s).
    Matched MeSH terms: Fatty Acids/chemistry
  6. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
    Matched MeSH terms: Fatty Acids/chemistry
  7. Makahleh A, Saad B, Siang GH, Saleh MI, Osman H, Salleh B
    Talanta, 2010 Apr 15;81(1-2):20-4.
    PMID: 20188881 DOI: 10.1016/j.talanta.2009.11.030
    A reversed-phase high-performance liquid chromatographic method with capacitively coupled contactless conductivity detector (C(4)D) has been developed for the separation and the simultaneous determination of five underivatized long chain fatty acids (FAs), namely myristic, palmitic, stearic, oleic, and linoleic acids. An isocratic elution mode using methanol/1mM sodium acetate (78:22, v/v) as mobile phase with a flow rate of 0.6 mL min(-1) was used. The separation was effected by using a Hypersil ODS C(18) analytical column (250 mm x 4.6 mm x 5 microm) and was operated at 45 degrees C. Calibration curves of the five FAs were well correlated (r(2)>0.999) within the range of 5- 200 microg mL(-1) for stearic acid, and 2-200 microg mL(-1) for the other FAs. The proposed method was tested on four vegetable oils, i.e., pumpkin, soybean, rice bran and palm olein oils; good agreement was found with the standard gas chromatographic (GC) method. The proposed method offers distinct advantages over the official GC method, especially in terms of simplicity, faster separation times and sensitivity.
    Matched MeSH terms: Fatty Acids/chemistry*
  8. Nasri C, Halabi Y, Hajib A, Choukri H, Harhar H, Lee LH, et al.
    Sci Rep, 2023 Dec 20;13(1):22767.
    PMID: 38123687 DOI: 10.1038/s41598-023-50119-y
    Eight Moroccan avocado varieties were analyzed for their nutritional composition and physicochemical properties. The nutritional contents of the sample were determined through the evaluation of the moisture, oil, ash, protein, and carbohydrate contents, and energy value calculation. Additionally, macroelements (Ca, Mg, and Na) and microelements (Fe, Zn, Cu, and Mn) were determined in the mineral profile. Oils were examined also for their fatty acid, phytosterol, and tocopherol profiles. As a result of the study, the avocado presents significant differences between the eight studied varieties (p 
    Matched MeSH terms: Fatty Acids/chemistry
  9. Boukraâ L, Sulaiman SA
    Recent Pat Antiinfect Drug Discov, 2009 Nov;4(3):206-13.
    PMID: 19673699
    Honey and other bee products were subjected to laboratory and clinical investigations during the past few decades and the most remarkable discovery was their antibacterial activity. Honey has been used since ancient times for the treatment of some diseases and for the healing of wounds but its use as an anti-infective agent was superseded by modern dressings and antibiotic therapy. However, the emergence of antibiotic resistant strains of bacteria has confounded the current use of antibiotic therapy leading to the re-examination of former remedies. Honey, propolis, royal jelly and bee venom have a strong antibacterial activity. Even antibiotic-resistant strains such as epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycine resistant Enterococcus (VRE) have been found to be as sensitive to honey as the antibiotic-sensitive strains of the same species. Sensitivity of bacteria to bee products varies considerably within the product and the varieties of the same product. Botanical origin plays a major role in its antibacterial activity. Propolis has been found to have the strongest action against bacteria. This is probably due to its richness in flavonoids. The most challenging problems of using hive products for medical purposes are dosage and safety. Honey and royal jelly produced as a food often are not well filtered, and may contain various particles. Processed for use in wound care, they are passed through fine filters which remove most of the pollen and other impurities to prevent allergies. Also, although honey does not allow vegetative bacteria to survive, it does contain viable spores, including clostridia. With the increased availability of licensed medical stuffs containing bee products, clinical use is expected to increase and further evidence will become available. Their use in professional care centres should be limited to those which are safe and with certified antibacterial activities. The present article is a short review of recent patents on antibiotics of hives.
    Matched MeSH terms: Fatty Acids/chemistry
  10. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Fatty Acids/chemistry
  11. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH
    Oxid Med Cell Longev, 2017;2017:1259510.
    PMID: 28814983 DOI: 10.1155/2017/1259510
    BACKGROUND: There are several health benefits that honeybee products such as honey, propolis, and royal jelly claim toward various types of diseases in addition to being food.

    SCOPE AND APPROACH: In this paper, the effects of honey, propolis, and royal jelly on different metabolic diseases, cancers, and other diseases have been reviewed. The modes of actions of these products have also been illustrated for purposes of better understanding.

    KEY FINDINGS AND CONCLUSIONS: An overview of honey, propolis, and royal jelly and their biological potentials was highlighted. The potential health benefits of honey, such as microbial inhibition, wound healing, and its effects on other diseases, are described. Propolis has been reported to have various health benefits related to gastrointestinal disorders, allergies, and gynecological, oral, and dermatological problems. Royal jelly is well known for its protective effects on reproductive health, neurodegenerative disorders, wound healing, and aging. Nevertheless, the exact mechanisms of action of honey, propolis, and royal jelly on the abovementioned diseases and activities have not been not fully elucidated, and further research is warranted to explain their exact contributions.

    Matched MeSH terms: Fatty Acids/chemistry
  12. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Fatty Acids/chemistry
  13. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
    Matched MeSH terms: Fatty Acids/chemistry
  14. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2012 Oct 08;17(10):11748-62.
    PMID: 23044712 DOI: 10.3390/molecules171011748
    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.
    Matched MeSH terms: Fatty Acids/chemistry*
  15. Bimakr M, Rahman RA, Taip FS, Adzahan NM, Sarker MZ, Ganjloo A
    Molecules, 2013 Jan 15;18(1):997-1014.
    PMID: 23322066 DOI: 10.3390/molecules18010997
    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.
    Matched MeSH terms: Fatty Acids/chemistry
  16. Zulkurnain M, Balasubramaniam VM, Maleky F
    Molecules, 2019 Aug 06;24(15).
    PMID: 31390764 DOI: 10.3390/molecules24152853
    Different fractions of fully hydrogenated soybean oil (FHSBO) in soybean oil (10-30% w/w) and the addition of 1% salt (sodium chloride) were used to investigate the effect of high-pressure treatments (HP) on the crystallization behaviors and physical properties of the binary mixtures. Sample microstructure, solid fat content (SFC), thermal and rheological properties were analyzed and compared against a control sample (crystallized under atmospheric condition). The crystallization temperature (Ts) of all model fats under isobaric conditions increased quadratically with pressure until reaching a pressure threshold. As a result of this change, the sample induction time of crystallization (tc) shifted from a range of 2.74-0.82 min to 0.72-0.43 min when sample crystallized above the pressure threshold under adiabatic conditions. At the high solid mass fraction, the addition of salt reduced the pressure threshold to induce crystallization during adiabatic compression. An increase in pressure significantly reduced mean cluster diameter in relation to the reduction of tc regardless of the solid mass fraction. In contrast, the sample macrostructural properties (SFC, storage modulus) were influenced more significantly by solid mass fractions rather than pressure levels. The creation of lipid gel was observed in the HP samples at 10% FHSBO. The changes in crystallization behaviors indicated that high-pressure treatments were more likely to influence crystallization mechanisms at low solid mass fraction.
    Matched MeSH terms: Fatty Acids/chemistry
  17. Nurfarahin AH, Mohamed MS, Phang LY
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323769 DOI: 10.3390/molecules24142613
    High production costs of biosurfactants are mainly caused by the usage of the expensive substrate and long fermentation period which undermines their potential in bioremediation processes, food, and cosmetic industries even though they, owing to the biodegradability, lower toxicity, and raise specificity traits. One way to circumvent this is to improvise the formulation of biosurfactant-production medium by using cheaper substrate. A culture medium utilizing palm fatty acid distillate (PFAD), a palm oil refinery by-product, was first developed through one-factor-at-a-time (OFAT) technique and further refined by means of the statistical design method of factorial and response surface modeling to enhance the biosurfactant production from Pseudomonas sp. LM19. The results shows that, the optimized culture medium containing: 1.148% (v/v) PFAD; 4.054 g/L KH2PO4; 1.30 g/L yeast extract; 0.023 g/L sodium-EDTA; 1.057 g/L MgSO4·7H2O; 0.75 g/L K2HPO4; 0.20 g/L CaCl2·2H2O; 0.080 g/L FeCl3·6H2O gave the maximum biosurfactant productivity. This study demonstrated that the cell concentration and biosurfactant productivity could reach up to 8.5 × 109 CFU/mL and 0.346 g/L/day, respectively after seven days of growth, which were comparable to the values predicted by an RSM regression model, i.e., 8.4 × 109 CFU/mL and 0.347 g/L/day, respectively. Eleven rhamnolipid congeners were detected, in which dirhamnolipid accounted for 58% and monorhamnolipid was 42%. All in all, manipulation of palm oil by-products proved to be a feasible substrate for increasing the biosurfactant production about 3.55-fold as shown in this study.
    Matched MeSH terms: Fatty Acids/chemistry*
  18. Ahmad R, Lim CK, Marzuki NF, Goh YK, Azizan KA, Goh YK, et al.
    Molecules, 2020 Dec 16;25(24).
    PMID: 33339375 DOI: 10.3390/molecules25245965
    In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.
    Matched MeSH terms: Fatty Acids/chemistry*
  19. Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, Al Awadh AA, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431794 DOI: 10.3390/molecules27227693
    Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
    Matched MeSH terms: Fatty Acids/chemistry
  20. Idrissi ZLE, El Moudden H, Mghazli N, Bouyahya A, Guezzane CE, Alshahrani MM, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431807 DOI: 10.3390/molecules27227709
    This study aimed to evaluate the effects of peanut varieties cultivated in Morocco (Virginia and Valencia) and extraction methods (cold press, CP; Soxhlet, Sox and maceration, and Mac) on the fatty acid profile, phytosterol, and tocopherol contents, quality characteristics, and antioxidant potential of peanut seed oil. The DPPH method was used to determine the antioxidant activity of the oils. The results revealed that fatty acid content was slightly affected by the extraction technique. However, the CP method was shown to be an excellent approach for extracting oil with desirable quality features compared to the Sox and Mac methods. Furthermore, the peanut oil extracted via CP carried a higher amount of bioactive compounds and exhibited remarkable antioxidant activities. The findings also revealed higher oleic acid levels from the Virginia oil, ranging from 56.46% to 56.99%. Besides, a higher total phytosterol and tocopherol content and DPPH scavenging capacity were obtained from the Valencia oil. Analyzing the study, it can be inferred that extraction method and variety both affect the composition of the peanut oil's bioactive compounds and antioxidant activity. This information is relevant for extracting peanut oil with a greater level of compounds of industrial interest.
    Matched MeSH terms: Fatty Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links