Displaying all 4 publications

Abstract:
Sort:
  1. Taib IS, Budin SB, Ghazali AR, Jayusman PA, Mohamed J
    Exp Anim, 2014;63(4):383-93.
    PMID: 25030881
    Exposure to organophosphate insecticides such as fenitrothion (FNT) in agriculture and public health has been reported to affect sperm quality. Antioxidants may have a potential to reduce spermatotoxic effects induced by organophosphate. The present study was carried out to evaluate the effects of palm oil tocotrienol-rich fraction (TRF) in reducing the detrimental effects occurring in spermatozoa of FNT-treated rats. Adult male Sprague-Dawley rats were divided into four equal groups: a control group and groups of rats treated orally with palm oil TRF (200 mg/kg), FNT (20 mg/kg) and palm oil TRF (200 mg/kg) combined with FNT (20 mg/kg). The sperm characteristics, DNA damage, superoxide dismutase (SOD) activity, and levels of reduced glutathione (GSH), malondialdehyde (MDA), and protein carbonyl (PC) were evaluated. Supplementation with TRF attenuated the detrimental effects of FNT by significantly increasing the sperm counts, motility, and viability and decreased the abnormal sperm morphology. The SOD activity and GSH level were significantly increased, whereas the MDA and PC levels were significantly decreased in the TRF+FNT group compared with the rats receiving FNT alone. TRF significantly decreased the DNA damage in the sperm of FNT-treated rats. A significant correlation between abnormal sperm morphology and DNA damage was found in all groups. TRF showed the potential to reduce the detrimental effects occurring in spermatozoa of FNT-treated rats.
    Matched MeSH terms: Fenitrothion/toxicity*
  2. Taib IS, Budin SB, Ghazali AR, Jayusman PA, Louis SR, Mohamed J
    Clinics (Sao Paulo), 2013 Jan;68(1):93-100.
    PMID: 23420164
    OBJECTIVE: Fenitrothion residue is found primarily in soil, water and food products and can lead to a variety of toxic effects on the immune, hepatobiliary and hematological systems. However, the effects of fenitrothion on the male reproductive system remain unclear. This study aimed to evaluate the effects of fenitrothion on the sperm and testes of male Sprague-Dawley rats.

    METHODS: A 20 mg/kg dose of fenitrothion was administered orally by gavages for 28 consecutive days. Blood sample was obtained by cardiac puncture and dissection of the testes and cauda epididymis was performed to obtain sperm. The effects of fenitrothion on the body and organ weight, biochemical and oxidative stress, sperm characteristics, histology and ultrastructural changes in the testes were evaluated.

    RESULTS: Fenitrothion significantly decreased the body weight gain and weight of the epididymis compared with the control group. Fenitrothion also decreased plasma cholinesterase activity compared with the control group. Fenitrothion altered the sperm characteristics, such as sperm concentration, sperm viability and normal sperm morphology, compared with the control group. Oxidative stress markers, such as malondialdehyde, protein carbonyl, total glutathione and glutathione S-transferase, were significantly increased and superoxide dismutase activity was significantly decreased in the fenitrothion-treated group compared with the control group. The histopathological and ultrastructural examination of the testes of the fenitrothion-treated group revealed alterations corresponding with the biochemical changes compared with the control group.

    CONCLUSION: A 20 mg/kg dose of fenitrothion caused deleterious effects on the sperm and testes of Sprague-Dawley rats.

    Matched MeSH terms: Fenitrothion/toxicity*
  3. Jayusman PA, Budin SB, Ghazali AR, Taib IS, Louis SR
    Pak J Pharm Sci, 2014 Nov;27(6):1873-80.
    PMID: 25362611
    Indiscriminate application of organophosphate (OP) pesticides has led to environmental pollution and severe health problems. The aim of the present study was to evaluate the effect of palm oil tocotrienol-rich fraction (TRF) on biochemical and morphological changes of the liver in rats treated with fenitrothion (FNT), a type of OP pesticide. A total of 28 male Sprague-Dawley rats were divided into four groups; control group, TRF-supplemented group, FNT-treated group and TRF+FNT group. TRF (200 mg/kg) was supplemented 30 minutes prior to FNT (20 mg/kg) administration, both orally for 28 consecutive days. Following 28 days of treatment, plasma biochemical changes and liver morphology were evaluated. The body and absolute liver weights were significantly elevated in TRF+FNT group compared to FNT group. TRF administration significantly decreased the total protein level and restored the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in TRF + FNT group. In contrast, total bilirubin level, γ-glutamyltranferase (GGT) and cholinesterase activity in TRF + FNT group did not significantly differ from FNT group. Administration of TRF also prevented FNT-induced morphological changes of liver as observed by electron microscope. In conclusion, TRF supplementation showed potential protective effect towards biochemical and ultrastructural changes in liver induced by FNT.
    Matched MeSH terms: Fenitrothion/toxicity*
  4. Budin SB, Han CM, Jayusman PA, Taib IS
    Pak J Biol Sci, 2012 Jun 01;15(11):517-23.
    PMID: 24191625
    Fenitrothion (FNT) is extensively used as pesticide and may induce oxidative stress in various organs. Tocotrienol, a form of vitamin E found in palm oil, reduces oxidative impairments in pathological conditions. This study aims to investigate the effects of palm oil tocotrienol rich fraction (TRF) on fenitrothion-induced oxidative damage in rat pancreas. Forty male Sprague-Dawley rats were divided into four groups: control group, FNT group, TRF group and FNT+TRF group. Regimens FNT (20 mg kg(-1) b.wt.) and TRF (200 mg kg(-1) b.wt.) were force-fed for 28 consecutive days with control group only receiving corn oil. Chronic administration of fenitrothion significantly (p < 0.05) induced oxidative damage in pancreas of rats with elevated malondialdehyde and protein carbonyl level. Depletion of glutathione and significant (p < 0.05) reduction in antioxidant enzyme activities in pancreas homogenate additionally suggested induction of oxidative stress. Despite these changes in pancreas of intoxicated rats, no significant (p < 0.05) changes in blood glucose and pancreas histology were observed. Co-administration of FNT with TRF alleviated these oxidative changes and significantly (p < 0.05) restored antioxidant status. Enzymatic activities of Superoxide Dismutase (SOD) and Catalase (CAT) were normalized. In conclusion, tocotrienol rich fraction of palm oil prevents fenitrothion-induced pancreatic oxidative damage in rats.
    Matched MeSH terms: Fenitrothion/toxicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links