Displaying publications 1 - 20 of 464 in total

Abstract:
Sort:
  1. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Fermentation
  2. Akhtar J, Idris A, Abd Aziz R
    Appl Microbiol Biotechnol, 2014 Feb;98(3):987-1000.
    PMID: 24292125 DOI: 10.1007/s00253-013-5319-6
    Production of succinic acid via separate enzymatic hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) are alternatives and are environmentally friendly processes. These processes have attained considerable positions in the industry with their own share of challenges and problems. The high-value succinic acid is extensively used in chemical, food, pharmaceutical, leather and textile industries and can be efficiently produced via several methods. Previously, succinic acid production via chemical synthesis from petrochemical or refined sugar has been the focus of interest of most reviewers. However, these expensive substrates have been recently replaced by alternative sustainable raw materials such as lignocellulosic biomass, which is cheap and abundantly available. Thus, this review focuses on succinic acid production utilizing lignocellulosic material as a potential substrate for SSF and SHF. SSF is an economical single-step process which can be a substitute for SHF - a two-step process where biomass is hydrolyzed in the first step and fermented in the second step. SSF of lignocellulosic biomass under optimum temperature and pH conditions results in the controlled release of sugar and simultaneous conversion into succinic acid by specific microorganisms, reducing reaction time and costs and increasing productivity. In addition, main process parameters which influence SHF and SSF processes such as batch and fed-batch fermentation conditions using different microbial strains are discussed in detail.
    Matched MeSH terms: Fermentation
  3. Zanirun Z, Bahrin EK, Lai-Yee P, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2014 Jan;172(1):423-35.
    PMID: 24085387 DOI: 10.1007/s12010-013-0530-6
    The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg β-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg β-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.
    Matched MeSH terms: Fermentation
  4. Linggang S, Phang LY, Wasoh MH, Abd-Aziz S
    Appl Biochem Biotechnol, 2012 May;167(1):122-31.
    PMID: 22528646 DOI: 10.1007/s12010-012-9592-0
    Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.
    Matched MeSH terms: Fermentation
  5. Zamzuri NA, Abd-Aziz S
    J Sci Food Agric, 2013 Feb;93(3):429-38.
    PMID: 23208984 DOI: 10.1002/jsfa.5962
    This review provides an overview of biovanillin production from agro wastes as an alternative food flavour. Biovanillin is one of the widely used flavour compounds in the foods, beverages and pharmaceutical industries. An alternative production approach for biovanillin as a food flavour is hoped for due to the high and variable cost of natural vanillin as well as the limited availability of vanilla pods in the market. Natural vanillin refers to the main organic compound that is extracted from the vanilla bean, as compared to biovanillin, which is produced biologically by microorganisms from a natural precursor such as ferulic acid. Biovanillin is also reviewed as a potential bioflavour produced by microbial fermentation in an economically feasible way in the near future. In fact, we briefly discuss natural, synthetic and biovanillin and the types of agro wastes that are useful as sources for bioconversion of ferulic acid into biovanillin. The subsequent part of the review emphasizes the current application of vanillin as well as the utilization of biovanillin as an alternative food flavour. The final part summarizes biovanillin production from agro wastes that could be of benefit as a food flavour derived from potential natural precursors.
    Matched MeSH terms: Fermentation
  6. Abd-Aziz S
    J Biosci Bioeng, 2002;94(6):526-9.
    PMID: 16233345
    The importance and development of industrial biotechnology processing has led to the utilisation of microbial enzymes in various applications. One of the important enzymes is amylase, which hydrolyses starch to glucose. In Malaysia, the use of sago starch has been increasing, and it is presently being used for the production of glucose. Sago starch represents an alternative cheap carbon source for fermentation processes that is attractive out of both economic and geographical considerations. Production of fermentable sugars from the hydrolysis of starches is normally carried out by an enzymatic processes that involves two reaction steps, liquefaction and saccharification, each of which has different temperature and pH optima with respect to the maximum reaction rate. This method of starch hydrolysis requires the use of an expensive temperature control system and a complex mixing device. Our laboratory has investigated the possibility of using amylolytic enzyme-producing microorganisms in the continuous single-step biological hydrolysis of sago flour for the production of a generic fermentation medium. The ability of a novel DNA-recombinated yeast, Saccharomyces cerevisiae strain YKU 107 (expressing alpha-amylase production) to hydrolyse gelatinised sago starch production has been studied with the aim of further utilizing sago starch to obtain value-added products.
    Matched MeSH terms: Fermentation
  7. Alam MZ, Fakhru'l-Razi A, Idris A, Abd-Aziz S
    PMID: 12227649
    The bioconversion of domestic wastewater sludge by immobilized mixed culture of filamentous fungi was investigated in a laboratory. The potential mixed culture of Penicillium corylophilum WWZA1003 and Aspergillus niger SCahmA103 was isolated from its local habitats (wastewater and sludge cake) and optimized on the basis of biodegradability and dewaterability of treated sludge. The observed results in this study showed that the sludge treatment was highly influenced by the effect of immobilized mixed fungi using liquid state bioconversion (LSB) process. The maximum production of dry filter cake (DFC) was enriched with fungal biomass to about 20.05 g/kg containing 23.47 g/kg of soluble protein after 4 days of fungal treatment. The reduction of COD, TSS, turbidity (optical density against distilled water, 660 nm), reducing sugar and protein in supernatant and filtration rate of treated sludge were influenced by the fungal mixed culture as compared to control (uninnoculated). After these processes, 99.4% of TSS, 98.05% of turbidity, 76.2% of soluble protein, 98% of reducing sugar and 92.4% of COD in supernatant of treated sludge were removed. Filtration time was decreased tremendously by the microbial treatment after 2 days of incubation. The effect of fungal strain on pH was also studied and presented. Effective bioconversion was observed after 4 days of fungal treatment.
    Matched MeSH terms: Fermentation
  8. Jenol MA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Bioprocess Biosyst Eng, 2020 Nov;43(11):2027-2038.
    PMID: 32572569 DOI: 10.1007/s00449-020-02391-9
    Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.
    Matched MeSH terms: Fermentation
  9. Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S
    Molecules, 2018 Aug 03;23(8).
    PMID: 30081514 DOI: 10.3390/molecules23081944
    This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
    Matched MeSH terms: Fermentation
  10. Salleh MSM, Ibrahim MF, Roslan AM, Abd-Aziz S
    Sci Rep, 2019 05 15;9(1):7443.
    PMID: 31092836 DOI: 10.1038/s41598-019-43718-1
    Simultaneous saccharification and fermentation (SSF) with delayed yeast extract feeding (DYEF) was conducted in a 2-L bioreactor equipped with in-situ recovery using a gas stripping in order to enhance biobutanol production from lignocellulosic biomass of oil palm empty fruit bunch (OPEFB). This study showed that 2.88 g/L of biobutanol has been produced from SSF with a similar yield of 0.23 g/g as compared to separate hydrolysis and fermentation (SHF). An increase of 42% of biobutanol concentration was observed when DYEF was introduced in the SSF at 39 h of fermentation operation. Biobutanol production was further enhanced up to 11% with a total improvement of 72% when in-situ recovery using a gas stripping was implemented to reduce the solvents inhibition in the bioreactor. In overall, DYEF and in-situ recovery were able to enhance biobutanol production in SSF.
    Matched MeSH terms: Fermentation/physiology
  11. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S
    Biomed Res Int, 2013;2013:935852.
    PMID: 23509813 DOI: 10.1155/2013/935852
    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, "sago hampas," through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media.
    Matched MeSH terms: Fermentation
  12. Dashti MG, Abdeshahian P
    Saudi J Biol Sci, 2016 Mar;23(2):172-80.
    PMID: 26980997 DOI: 10.1016/j.sjbs.2015.02.006
    This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10(-2) mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.
    Matched MeSH terms: Fermentation
  13. Ganjali Dashti M, Abdeshahian P, Wan Yusoff WM, Kalil MS, Abdul Hamid A
    Biomed Res Int, 2014;2014:831783.
    PMID: 25147817 DOI: 10.1155/2014/831783
    The biosynthesis of biomedical products including lipid and gamma-linolenic acid (GLA) by Cunninghamella bainieri 2A1 was studied in repeated batch fermentation. Three key process variables, namely, glucose concentration, ammonium tartrate concentration, and harvesting time, were optimized using response surface methodology. Repeated batch fermentation was carried out by the cultivation of Cunninghamella bainieri 2A1 in nitrogen-limited medium with various nitrogen concentration (1-4 g/L) and glucose concentration (20-40 g/L) at three time intervals (12 h, 24 h, and 48 h). Experimental results showed that the highest lipid concentration of 6.2 g/L and the highest GLA concentration of 0.4 g/L were obtained in optimum conditions, where 20.2 g/L glucose, 2.12 g/L ammonium tartrate, and 48 h harvesting time were utilized. Statistical results showed that the interaction between glucose and ammonium tartrate concentration had highly significant effects on lipid and GLA biosynthesis (P < 0.01). Moreover, harvesting time had a significant interaction effect with glucose and ammonium tartrate concentration on lipid production (P < 0.05).
    Matched MeSH terms: Fermentation/physiology*
  14. Abdul Samah O, Ibrahim N, Alimon H, Abdul Karim MI
    World J Microbiol Biotechnol, 1993 Sep;9(5):603-4.
    PMID: 24420212 DOI: 10.1007/BF00386306
    Acetic and lactic acid bacteria on fermented cocoa beans were maximally 2.0×10(6) and 1.9×10(6) c.f.u./g wet wt, respectively. Acetic and lactic acids were detected on the second and fourth days of fermentation and were maximally 140 and 45 mg/10 g beans, respectively. There was a positive correlation between the sizes of the relevant microbial populations and the amounts of acids produced during fermentation.
    Matched MeSH terms: Fermentation
  15. Kithur Mohamed S, Asif M, Nazari MV, Baharetha HM, Mahmood S, Yatim ARM, et al.
    Indian J Pharmacol, 2019 4 30;51(1):45-54.
    PMID: 31031467 DOI: 10.4103/ijp.IJP_312_18
    OBJECTIVES: Sophorolipids (SLs) are a group of surface-active glycolipids produced by a type of nonpathogenic yeast Candida bombicola in the presence of vegetable oil through fermentation technology. SLs have shown antitumor activity; however, the mechanism of action underlying the anticancer activity of SLs is poorly understood. This work evaluated the anticancer activity of SLs fermented from palm oil by exploring its antiangiogenic activity.

    MATERIALS AND METHODS: The SLs that were fermented and further characterized for their biochemical activities. Cytotoxicity study was performed to assess cytostatic properties. A series of in vitro and ex vivo angiogenesis assay was also carried out. The relative fold change in the expression of p53 mRNA by SLs was also studied.

    RESULTS: Altogether, the data show that SLs derived from palm oil fermentation process inhibited neovascularization in the ex vivo tissue segments and also the endothelial cell proliferation between 50% and 65% inhibition as a whole. The palm oil derived SLs also caused downregulation of the suppression level of vascular endothelial growth factor and also upregulate the p53 mRNA level. The analytical studies revealed the presence of high amount of phenolic compounds but with relatively weak antioxidant activity. The gas chromatography-mass spectrometry studies revealed abundant amount of palmitic and oleic acid, the latter an established antiangiogenic agent, and the former being proangiogenic.

    CONCLUSION: Therefore, it can be concluded from this study that SLs derived from fermented palm oil have potent antiangiogenic activity which may be attributed by its oleic acid component.

    Matched MeSH terms: Fermentation
  16. Mustafa SM, Chua LS, El-Enshasy HA, Abd Majid FA, Hanapi SZ, Abdul Malik R
    J Food Biochem, 2019 04;43(4):e12805.
    PMID: 31353583 DOI: 10.1111/jfbc.12805
    This study was focused on the effects of fermentation temperature and pH on the quality of Punica granatum juice probioticated with Lactobacillus species: Lactobacillus plantarum, Lactobacillus casei, Lactobacillus bulgaricus, and Lactobacillus salivarius. The whole fruit juice of P. granatum which is rich with phytonutrients appeared to be a good probiotic carrier. The probiotication was carried out for 24 hr at 30, 35, and 37°C and pH 2.5, 4.0, and 5.5 under microaerophilic conditions. The results found that P. granatum juice cultivated with L. casei had a better growth profile with a higher biomass density at 37°C around pH 3.5-4.0. Probiotication could maintain the scavenging activity of P. granatum juice cultivated with L. casei. The scavenging activity achieved up to 90% inhibition at the concentration of 5 mg/ml. The whole fruit-squeezed P. granatum juice was suitable for the growth of Lactobacillus species even without supplementation during cultivation. PRACTICAL APPLICATIONS: The findings of this study presented the potential of P. granatum juice (whole fruit) to be used as a good probiotic carrier, particularly for Lactobacillus species without supplementation. High nutritious P. granatum juice catered the need of probiotic bacteria during fermentation. Probiotication could maintain the antioxidant capacity of the juice in term of its radical scavenging activity. The antioxidant capacity was mainly attributed to the metabolites such as phenolic acids (romarinic acid and caftaric acid) and flavonoids (quercetin, quercetin 3-glucoside, rutin and kaempferol rutinoside). With the optimized temperature (37°C) and pH (4.00), probiotic bacteria could growth well up to a cell viability of 2.46 × 1010  cfu/ml. This offers P. granatum to be developed into functional food to cater to the needs of the consumers who are lactose intolerant to dairy products.
    Matched MeSH terms: Fermentation
  17. Chang HM, Foo HL, Loh TC, Lim ETC, Abdul Mutalib NE
    Front Vet Sci, 2020;7:602280.
    PMID: 33575277 DOI: 10.3389/fvets.2020.602280
    Despite inflammation being a protective natural defense against imbalance stressors in the body, chronic inflammation could lead to the deterioration of immune response, low production, and poor performance in livestock as well as severe economic losses to the farmers. Postbiotics produced by Lactiplantibacillus plantarum has been reported recently to be a natural source of antioxidant, promoting growth performance, anti-inflammation, and immune responses. However, the effects of fermentation media on the compositions of L. plantarum postbiotic have not been reported elsewhere. Hence, a comparative study was conducted to compare the volatile compounds, organic acid composition, and antioxidant and antimicrobial activities of postbiotics produced by six strains of L. plantarum cultivated by using formulated media and the commercial de Man, Rogosa, and Sharpe (MRS) medium as a control. Postbiotics RG14, RI11, and UL4 produced by using formulated media exhibited higher inhibitory activity against Pediococcus acidilactici 446, Escherichia coli E-30, Salmonella enterica CS3, and vancomycin-resistant Enterococci except for Listeria monocytogenes LS55. As for the antioxidant activity, hydroxyl radical scavenging activity was enhanced in formulated media, whereas reducing power activity was the highest in postbiotic RI11. Three organic acids, namely, acetic acid, caproic acid, and lactic acid, were detected in the postbiotic produced by various L. plantarum strains. The concentration of acetic acid was influenced by the fermentation media, whereas caproic acid was detected as the highest in postbiotic RG11. Lactic acid was the predominant compound detected in all the postbiotics and had the significantly highest concentration in postbiotic RS5 when produced by using the MRS medium. Intermediary and pyrrole compounds were the other main compounds that were detected by using GC-MS. Positive correlations were found between organic acid production and inhibitory activity, as well as antioxidant activity exhibited by postbiotics. In conclusion, the compositions and functional characteristics of postbiotics produced by the six strains of L. plantarum were strain-dependent and affected greatly by the fermentation medium. The effects of postbiotic composition on the functional characteristics of postbiotics were elucidated in this study to warrant their applications as a promising beneficial natural growth promoter for the livestock industry.
    Matched MeSH terms: Fermentation
  18. Tiang MF, Hanipa MAF, Mahmod SS, Zainuddin MT, Lutfi AAI, Jahim JM, et al.
    Bioresour Technol, 2024 Feb;394:130222.
    PMID: 38109981 DOI: 10.1016/j.biortech.2023.130222
    Purple non-sulphur bacteria can only capture up to 10 % light spectra and only 1-5 % of light is converted efficiently for biohydrogen production. To enhance light capture and conversion efficiencies, it is necessary to understand the impact of various light spectra on light harvesting pigments. During photo-fermentation, Rhodobacter sphaeroides KKU-PS1 cultivated at 30 °C and 150 rpm under different light spectra has been investigated. Results revealed that red light is more beneficial for biomass accumulation, whereas green light showed the greatest impact on photo-fermentative biohydrogen production. Light conversion efficiency by green light is 2-folds of that under control white light, hence photo-hydrogen productivity is ranked as green > red > orange > violet > blue > yellow. These experimental data demonstrated that green and red lights are essential for photo-hydrogen and biomass productions of R. sphaeroides and a clearer understanding that possibly pave the way for further photosynthetic enhancement research.
    Matched MeSH terms: Fermentation
  19. Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Feb 11;25(4).
    PMID: 32054138 DOI: 10.3390/molecules25040779
    Tryptophan is one of the most extensively used amino acids in livestock industry owing to its effectiveness in enhancing the growth performance of animals. Conventionally, the production of tryptophan relies heavily on genetically modified Escherichia coli but its pathogenicity is a great concern. Our recent study demonstrated that a lactic acid bacterium (LAB), Pediococcus acidilactici TP-6 that isolated from Malaysian food was a promising tryptophan producer. However, the tryptophan production must enhance further for viable industrial application. Hence, the current study evaluated the effects of medium components and optimized the medium composition for tryptophan production by P. acidilactici TP-6 statistically using Plackett-Burman Design, and Central Composite Design. The optimized medium containing molasses (14.06 g/L), meat extract (23.68 g/L), urea (5.56 g/L) and FeSO4 (0.024 g/L) significantly enhanced the tryptophan production by 150% as compared to the control de Man, Rogosa and Sharpe medium. The findings obtained in this study revealed that rapid evaluation and effective optimization of medium composition governing tryptophan production by P. acidilactici TP-6 were feasible via statistical approaches. Additionally, the current findings reveal the potential of utilizing LAB as a safer alternative tryptophan producer and provides insight for future exploitation of various amino acid productions by LAB.
    Matched MeSH terms: Fermentation*
  20. Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA
    PeerJ, 2016;4:e1751.
    PMID: 26989608 DOI: 10.7717/peerj.1751
    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
    Matched MeSH terms: Fermentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links