Displaying publications 1 - 20 of 299 in total

Abstract:
Sort:
  1. Durani LW, Khor SC, Tan JK, Chua KH, Mohd Yusof YA, Makpol S
    Biomed Res Int, 2017;2017:6894026.
    PMID: 28596968 DOI: 10.1155/2017/6894026
    Piper betle
    (PB) is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs) was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%), presenescent (127.3%), and senescent (157.3%) HDFs. Increased expressions ofPRDX6,TP53,CDKN2A,PAK2, andMAPK14were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions ofSOD1increased, whereasGPX1,PRDX6,TP53,CDKN2A,PAK2, andMAPK14were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism*
  2. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    Sci Rep, 2021 02 26;11(1):4773.
    PMID: 33637843 DOI: 10.1038/s41598-021-83163-7
    Cytoprotection involving the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is an important preventive strategy for normal cells against carcinogenesis. In our previous study, the chemopreventive potential of (E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) has been elucidated through its cytoprotective effects against DNA and mitochondrial damages in the human colon fibroblast CCD-18Co cell model. Therefore this study aimed to investigate the molecular mechanisms underlying BK3C231-induced cytoprotection and the involvement of the Nrf2/ARE pathway. The cells were pretreated with BK3C231 before exposure to carcinogen 4-nitroquinoline N-oxide (4NQO). BK3C231 increased the protein expression and activity of cytoprotective enzymes namely NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST) and heme oxygenase-1 (HO-1), as well as restoring the expression of glutamate-cysteine ligase catalytic subunit (GCLC) back to the basal level. Furthermore, dissociation of Nrf2 from its inhibitory protein, Keap1, and ARE promoter activity were upregulated in cells pretreated with BK3C231. Taken together, our findings suggest that BK3C231 exerts cytoprotection by activating the Nrf2 signaling pathway which leads to ARE-mediated upregulation of cytoprotective proteins. This study provides new mechanistic insights into BK3C231 chemopreventive activities and highlights the importance of stilbene derivatives upon development as a potential chemopreventive agent.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects*; Fibroblasts/metabolism
  3. Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ
    Asian J Pharm Sci, 2018 Jul;13(4):317-325.
    PMID: 32104405 DOI: 10.1016/j.ajps.2017.12.003
    This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4',6-diamidino-2-phenylindole and 5-ethynyl-2'-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P 
    Matched MeSH terms: Fibroblasts
  4. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al.
    Bioorg Chem, 2017 06;72:21-31.
    PMID: 28346872 DOI: 10.1016/j.bioorg.2017.03.007
    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50=8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC50=21.25±0.15μM). It is worth mentioning that derivatives 7 (IC50=12.07±0.05μM), 8 (IC50=10.57±0.12μM), 11 (IC50=13.76±0.02μM), 14 (IC50=15.70±0.12μM) and 22 (IC50=8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.
    Matched MeSH terms: Fibroblasts
  5. Sideek MA, Smith J, Menz C, Adams JRJ, Cowin AJ, Gibson MA
    Int J Mol Sci, 2017 Oct 09;18(10).
    PMID: 28991210 DOI: 10.3390/ijms18102114
    Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
    Matched MeSH terms: Fibroblasts/metabolism*
  6. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
    Matched MeSH terms: Fibroblasts
  7. Feng Z, Ishiguro Y, Fujita K, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2015 Oct;67:365-81.
    PMID: 26247391 DOI: 10.1016/j.biomaterials.2015.07.038
    In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of the initial end-to-end distance to the contour length (and its probability function). For network alterations, we quantitatively treat changes in constituent elements and relate these changes to the alteration of network characteristics. Singular in its physical rigor and clarity, this constitutive theory can reproduce and predict a wide range of nonlinear mechanical behavior in materials composed of a crosslinked filamentous network, including: stress relaxation (with dual relaxation coefficients as typically observed in soft tissues); hysteresis with decreasing maximum stress under serial cyclic loading; strain-stiffening under uniaxial tension; the rupture point of the structure as a whole; various effects of biaxial tensile loading; strain-stiffening under simple shearing; the so-called "negative normal stress" phenomenon; and enthalpic elastic behaviors of the constituent element. Applied to compacted collagen gels, the theory demonstrates that collagen fibrils behave as enthalpic elasticas with linear elasticity within the gels, and that the macroscale nonlinearity of the gels originates from the curved fibrillar network. Meanwhile, the underlying factors that determine the mechanical properties of the gels are clarified. Finally, the implications of this study on the enhancement of the mechanical properties of compacted collagen gels and on the cellular mechanics with this model tissue are discussed.
    Matched MeSH terms: Fibroblasts/drug effects; Fibroblasts/metabolism*; Fibroblasts/ultrastructure
  8. Kabir TD, Leigh RJ, Tasena H, Mellone M, Coletta RD, Parkinson EK, et al.
    Aging (Albany NY), 2016 08;8(8):1608-35.
    PMID: 27385366 DOI: 10.18632/aging.100987
    Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts.
    Matched MeSH terms: Cancer-Associated Fibroblasts/drug effects; Cancer-Associated Fibroblasts/metabolism*
  9. Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, et al.
    Carcinogenesis, 2018 05 28;39(6):798-807.
    PMID: 29506142 DOI: 10.1093/carcin/bgy032
    The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
    Matched MeSH terms: Cancer-Associated Fibroblasts/metabolism*
  10. Guo HF, Mohd Ali R, Abd Hamid R, Chang SK, Zainal Z, Khaza'ai H
    Int J Burns Trauma, 2020;10(5):218-224.
    PMID: 33224609
    Burns are injuries on the skin or other tissues. Burns are divided into superficial, partial, and full-thickness, characterized by the depth of the affected tissues. Histological analysis is critical to assess the burn wound healing process. Thus, a systematic evaluation system is imperative for burn research. In the present study, a total of thirty Sprague-Dawley rats were randomly divided into five groups. Deep partial-thickness burn wound was induced on the dorsal part of the rats. Six animals from each group were sacrificed on the 3rd, 7th, 11th, 14th and 21st day post-burn, respectively. Half of the wound tissue was immediately fixed in buffered neutral formalin for hematoxylin & eosin staining. The healing of the epidermis was evaluated with scores ranging from 0 to 7 based on the state of crust on wound surface, the degree of epithelialization as well as the formation of rete ridges. Meanwhile, healing of the dermis was also evaluated with scores ranging from 0 to 7 according to the proportion of adipose cells, inflammatory cells and fibroblasts, the state of collagen deposition as well as the formation of hair follicles. Furthermore, temporal changes of histological score of epidermis and dermis in the skin tissue with deep partial-thickness burn was evaluated. In conclusion, a new comprehensive system for assessing microscopic changes in the healing process of deep partial-thickness burn wound in hematoxylin & eosin staining slides was established, which simplified the scoring process and helped to obtain reproducible and accurate results in the burn study.
    Matched MeSH terms: Fibroblasts
  11. Makhmudi A, Wirohadidjojo YW, Gahara E, Noor HZ, Sunardi M, Mahmudah NA, et al.
    Med J Malaysia, 2020 11;75(6):698-704.
    PMID: 33219180
    INTRODUCTION: Several studies have reported the disturbance in the process of wound healing after administration of mitomycin-C, which inhibits granulation tissue formation and collagen synthesis, resulting in chronic wounds. The vitreous gel of cow eyeballs contains a high level of hyaluronic acid, which has a role in inflammation, granulation, re-epithelialization, and remodelling. This study aims to understand the effect of 1% povidone iodine and vitreous gel of cow eyeballs on wound healing after administration of mitomycin-C.

    METHODS: This was an in vivo study with quasi-experimental methods on 32 Wistar mice. Full-thickness wounds were made and then treated with mitomicyn-C. The mice were divided into 4 groups: a control group with NaCl 0.9% vitreous gel of cow eyeball (VGCE), 1% povidone-iodine, and a combination of VGCE and 1% povidone-iodine groups. Macroscopic and microscopic observations of the process of wound healing were performed on days 3, 7, and 14.

    RESULTS: Vitreous gel administration produced significant wound healing rates within the first three days, and histological analysis revealed an increased number of fibroblasts and polymorphonuclear cells. However, the povidone iodine group and the combination group with vitreous gel did not produce significant results.

    CONCLUSION: The single administration of VGCE can accelerate the wound healing process, increase the number of fibroblasts, and reduce inflammation in a chronic wound model.

    Matched MeSH terms: Fibroblasts
  12. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/physiology
  13. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  14. Sahapaibounkit P, Prasertsung I, Mongkolnavin R, Wong CS, Damrongsakkul S
    J Biomed Mater Res B Appl Biomater, 2017 08;105(6):1658-1666.
    PMID: 27177842 DOI: 10.1002/jbm.b.33708
    In this study, polycaprolactone (PCL) film, a high potential material used in biomedical applications, was treated by air plasma prior to a conjugation by carbodiimide cross-linking with various types of proteins, including type A gelatin, type B gelatin, and collagen hydrolysate. The properties of modified PCL films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and atomic force microscopy. The XPS results showed that oxygen and nitrogen atoms were successfully introduced on the air plasma-treated PCL surface. Primary amine was found on the air plasma-treated PCL films. All proteins were shown to be successfully cross-linked on air plasma-treated PCL films. The wettability and roughness of protein-conjugated PCL films were significantly increased compared to those of neat PCL film. In vitro biocompatibility test using L929 mouse fibroblast showed that the attachment percentage and spreading area of attached cells on all protein-conjugated PCL films were markedly increased. Comparing among modified PCL films, no significant difference on the attachment of L929 on modified PCL films was noticed. However, the spreading areas of cells after 24 hours of culture on type A gelatin- and type B gelatin-modified PCL surfaces were higher than that on collagen hydrolysate-modified surface, possibly related to the lower percentage of amide bond on collagen hydrolysate-conjugated surface compared to those on both gelatin-conjugated PCL ones. This indicated that the two-step modification of PCL film via air plasma and carbodiimide cross-linking with collagen-derived proteins could enhance the biocompatibility of PCL films. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1658-1666, 2017.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism*
  15. Abd Ghafar N, Ker-Woon C, Hui CK, Mohd Yusof YA, Wan Ngah WZ
    BMC Complement Altern Med, 2016 Jul 29;16:259.
    PMID: 27473120 DOI: 10.1186/s12906-016-1248-0
    BACKGROUND: The study aimed to evaluate the effects of Acacia honey (AH) on the migration, differentiation and healing properties of the cultured rabbit corneal fibroblasts.

    METHODS: Stromal derived corneal fibroblasts from New Zealand White rabbit (n = 6) were isolated and cultured until passage 1. In vitro corneal ulcer was created using a 4 mm corneal trephine onto confluent cultures and treated with basal medium (FD), medium containing serum (FDS), with and without 0.025 % AH. Wound areas were recorded at day 0, 3 and 6 post wound creation. Genes and proteins associated with wound healing and differentiation such as aldehyde dehydrogenase (ALDH), vimentin, alpha-smooth muscle actin (α-SMA), collagen type I, lumican and matrix metalloproteinase 12 (MMP12) were evaluated using qRT-PCR and immunocytochemistry respectively.

    RESULTS: Cells cultured with AH-enriched FDS media achieved complete wound closure at day 6 post wound creation. The cells cultured in AH-enriched FDS media increased the expression of vimentin, collagen type I and lumican genes and decreased the ALDH, α-SMA and MMP12 gene expressions. Protein expression of ALDH, vimentin and α-SMA were in accordance with the gene expression analyses.

    CONCLUSION: These results demonstrated AH accelerate corneal fibroblasts migration and differentiation of the in vitro corneal ulcer model while increasing the genes and proteins associated with stromal wound healing.

    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  16. Ng SL, Nordin A, Abd Ghafar N, Suboh Y, Ab Rahim N, Chua KH
    Parasit Vectors, 2017 12 28;10(1):625.
    PMID: 29282148 DOI: 10.1186/s13071-017-2547-0
    BACKGROUND: In recent years, the concern of Acanthamoeba keratitis has increased since the infection is often associated with contact lens use. Partial 18S rRNA genotypic identification of Acanthamoeba isolates is important to correlate with pathophysiological properties in order to evaluate the degree of virulence. This is the first report of genotypic identification for clinical isolates of Acanthamoeba from corneal scrapings of keratitis in Malaysia. This study is also the first to correlate the mRNA expression of MBP and AhLBP as virulent markers for axenic strains of Acanthamoeba.

    RESULTS: In this study, ten clinical isolates were obtained from corneal scrapings. Rns genotype and intra-genotypic variation at the DF3 region of the isolates were identified. Results revealed that all clinical isolates belonged to the T4 genotype, with T4/6 (4 isolates), T4/2 (3 isolates), T4/16 (2 isolates) and one new genotype T4 sequence (T4/36), being determined. The axenic clinical isolates were cytopathogenic to rabbit corneal fibroblasts. MBP and AhLBP mRNA expression are directly correlated to Acanthamoeba cytopathic effect.

    CONCLUSIONS: All ten Malaysian clinical isolates were identified as genotype T4 which is predominantly associated with AK. Measuring the mRNA expression of Acanthamoeba virulent markers could be useful in the understanding of the pathogenesis of Acanthamoeba keratitis.

    Matched MeSH terms: Fibroblasts
  17. Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, et al.
    PMID: 33826152 DOI: 10.1002/bab.2162
    Despite a lot of intensive research on cells-scaffolds interaction, focused are mainly on the capacity of construct scaffolds to regulate cell mobility, migration and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions has profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold is a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSCs interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSCs interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Fibroblasts
  18. Mahmood, A.A., Hapipah, M.A., Noor, S.M., Kuppusamy, U.R., Salmah, I., Salmah, I., et al.
    ASM Science Journal, 2009;3(1):51-57.
    MyJurnal
    The effects of topical application of Orthosiphon stamineus leaf extract on the rate of wound healing and histology of the healed wound were assessed. Four groups of adult male Sprague Dawley rats were experimentally wounded in the posterior neck area. A thin layer of blank placebo was applied topically to wounds of Group 1 rats. Wounds of experimental animals (Group 2 and 3) were dressed with placebo containing 5% and 10% O. stamineus extract, respectively. A thin layer of Intrasite gel® was applied topically to wounds of Group 4 animals as reference. Macroscopically, wounds dressed with placebo containing 5% (healed on day 14.50 ± 0.43) and 10% (healed on day 13.83 ± 0.21) O. stamineus extract each or Intrasite gel® (healed on day 13.13 ± 0.42) significantly accelerated the rate of wound healing compared to wounds dressed with blank placebo. Histological analysis of healed wounds confirmed the results. Wounds dressed with placebo containing 5%, 10% O.stamineus or Intrasite gel® showed markedly less scar width at wound enclosure and granulating tissue contained markedly more collagen, proliferating fibroblast with angiogenesis, and no inflammatory cells compared to wounds dressed with blank placebo. In conclusion, placebo containing 5% or 10% O. stamineus on extract-dressed wounds significantly accelerated the rate of wound healing in rats.
    Matched MeSH terms: Fibroblasts
  19. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Fibroblasts/cytology
  20. Kardia E, Yusoff NM, Zakaria Z, Yahaya B
    J Aerosol Med Pulm Drug Deliv, 2014 Feb;27(1):30-4.
    PMID: 23409833 DOI: 10.1089/jamp.2012.1020
    Cell-based therapy has great potential to treat patients with lung diseases. The administration of cells into an injured lung is one method of repairing and replacing lost lung tissue. However, different types of delivery have been studied and compared, and none of the techniques resulted in engraftment of a high number of cells into the targeted organ. In this in vitro study, a novel method of cell delivery was introduced to investigate the possibility of delivering aerosolized skin-derived fibroblasts.
    Matched MeSH terms: Fibroblasts/transplantation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links