Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Fibroblasts/cytology
  2. Nur Adelina AN, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Saim L, et al.
    Med J Malaysia, 2004 May;59 Suppl B:188-9.
    PMID: 15468881
    Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.
    Matched MeSH terms: Fibroblasts/cytology
  3. Norazril SA, Aminuddin BS, Norhayati MM, Mazlyzam AL, Fauziah O, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:186-7.
    PMID: 15468880
    Chitosan has similar structure to glycosaminoglycans in the tissue, thus may be a good candidates as tissue engineering scaffold. However, to improve their cell attachment ability, we try to incorporate this natural polymer with collagen by combining it via cross-linking process. In this preliminary study we evaluate the cell attachment ability of chitosan-collagen scaffold versus chitosan scaffold alone. Chitosan and collagen were dissolved in 1% acetic acid and then were frozen for 24 hours before the lyophilizing process. Human skin fibroblasts were seeded into both scaffold and were cultured in F12: DMEM (1:1). Metabolic activity assay were used to evaluate cell attachment ability of scaffold for a period of 1, 3, 7 and 14 days. Scanning electron micrographs shows good cell morphology on chitosan-collagen hybrid scaffold. In conclusion, the incorporation of collagen to chitosan will enhance its cell attachment ability and will be a potential scaffold in tissue engineering.
    Matched MeSH terms: Fibroblasts/cytology
  4. Mazlyzam AL, Aminuddin BS, Lokman BS, Isa MR, Fuzina H, Fauziah O, et al.
    Med J Malaysia, 2004 May;59 Suppl B:39-40.
    PMID: 15468808
    Our objective is to determine the quality of tissue engineered human skin via immunostaining, RT-PCR and electron microscopy (SEM and TEM). Culture-expanded human keratinocytes and fibroblasts were used to construct bilayer tissue-engineered skin. The in vitro skin construct was cultured for 5 days and implanted on the dorsum of athymic mice for 30 days. Immunostaining of the in vivo skin construct appeared positive for monoclonal mouse anti-human cytokeratin, anti-human involucrin and anti-human collagen type I. RT-PCR analysis revealed loss of the expression for keratin type 1, 10 and 5 and re-expression of keratin type 14, the marker for basal keratinocytes cells in normal skin. SEM showed fibroblasts proliferating in the 5 days in vitro skin. TEM of the in vivo skin construct showed an active fibrocyte cell secreting dense collagen fibrils. We have successfully constructed bilayer tissue engineered human skin that has similar features to normal human skin.
    Matched MeSH terms: Fibroblasts/cytology*
  5. Kojima K
    Med J Malaysia, 2004 May;59 Suppl B:32-3.
    PMID: 15468805
    Matched MeSH terms: Fibroblasts/cytology
  6. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
    Matched MeSH terms: Fibroblasts/cytology
  7. Mazlyzam AL, Aminuddin BS, Fuzina NH, Norhayati MM, Fauziah O, Isa MR, et al.
    Burns, 2007 May;33(3):355-63.
    PMID: 17321690
    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.
    Matched MeSH terms: Fibroblasts/cytology
  8. Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH
    J Biomed Mater Res A, 2007 May;81(2):317-25.
    PMID: 17120221
    Among the various biomaterials available for tissue engineering and therapeutic applications, microbial polyhydroxyalkanoates offer the most diverse range of thermal and mechanical properties. In this study, the biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB); containing 50 mol % of 4-hydroxybutyrate] copolymer produced by Delftia acidovorans was evaluated. The cytotoxicity, mode of cell death, and genotoxicity of P(3HB-co-4HB) extract against V79 and L929 fibroblast cells were assessed using MTT assay, acridine orange/propidium iodide staining, and alkaline comet assay, respectively. Our results demonstrate that P(3HB-co-4HB) treated on both cell lines were comparable with clinically-used Polyglactin 910, where more than 60% of viable cells were observed following 72-h treatment at 200 mg/mL. Further morphological investigation on the mode of cell death showed an increase in apoptotic cells in a time-dependent manner in both cell lines. On the other hand, P(3HB-co-4HB) at 200 mg/mL showed no genotoxic effects as determined by alkaline comet assay following 72-h treatment. In conclusion, our study indicated that P(3HB-co-4HB) compounds showed good biocompatibility in fibroblast cells suggesting that it has potential to be used for future medical applications.
    Matched MeSH terms: Fibroblasts/cytology
  9. Abdull Razis AF, Ismail EN, Hambali Z, Abdullah MN, Ali AM, Mohd Lila MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):249-61.
    PMID: 18556814
    Recombinant human epidermal growth factor (EGF) was successfully expressed as a fusion protein in Escherichia coli system. This system was used OmpA signal sequence to produce soluble protein into the periplasm of E. coli. Human EGF (hEGF) synthesized in bacterial cell was found to be similar in size with the original protein and molecular weight approximately at 6.8 kDa. Cell proliferation assay was conducted to characterize the biological activity of hEGF on human dermal fibroblasts. The synthesized hEGF was found to be functional as compared with authentic hEGF in stimulating cell proliferation and promoting growth of cell. In comparison of biological activity between synthesized and commercial hEGF on cell proliferation, the results showed there was no significant different. This finding indicates the synthesized hEGF in E. coli system is fully bioactive in vitro.
    Matched MeSH terms: Fibroblasts/cytology
  10. Ferdaos N, Nathan S, Nordin N
    Med J Malaysia, 2008 Jul;63 Suppl A:75-6.
    PMID: 19024991
    Amniotic fluid (AF) serves as an excellent alternative source of pluripotent stem cells, as they are not bound with ethical issues and the stem cells are more primitive than adult stem (AS) cells. Hence, they have higher potential. Here we aim to isolate and characterize pluripotent stem cells from mid-term and full-term pregnant rat amniotic fluid. The results demonstrate the evidence of heterogeneous population of cells in the amniotic fluid and some of the cells morphology shows similarity with ES cells.
    Matched MeSH terms: Fibroblasts/cytology*
  11. Ibnubaidah MA, Chua KH, Mazita A, Azida ZN, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:115-6.
    PMID: 19025012
    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin.
    Matched MeSH terms: Fibroblasts/cytology
  12. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
    Matched MeSH terms: Fibroblasts/cytology*
  13. Mazlyzam AL, Aminuddin BS, Saim L, Ruszymah BH
    Arch Med Res, 2008 Nov;39(8):743-52.
    PMID: 18996287 DOI: 10.1016/j.arcmed.2008.09.001
    Standard fibroblast culture medium usually contains fetal bovine serum (FBS). In theory, unknown risks of infection from bovine disease or immune reaction to foreign proteins may occur if standard culture method is used for future human tissue-engineering development. Human serum (HS) theoretically would be another choice in providing a safer approach and autologous clinically reliable cells.
    Matched MeSH terms: Fibroblasts/cytology
  14. Chai WL, Moharamzadeh K, Brook IM, Emanuelsson L, Palmquist A, van Noort R
    J. Periodontol., 2010 Aug;81(8):1187-95.
    PMID: 20450401 DOI: 10.1902/jop.2010.090648
    In dental implant treatment, the long-term prognosis is dependent on the biologic seal formed by the soft tissue around the implant. The in vitro investigation of the implant-soft tissue interface is usually carried out using a monolayer cell-culture model that lacks a polarized-cell phenotype. This study developed a tissue-engineered three-dimensional oral mucosal model (3D OMM) to investigate the implant-soft tissue interface.
    Matched MeSH terms: Fibroblasts/cytology
  15. Zainuddin A, Chua KH, Abdul Rahim N, Makpol S
    BMC Mol. Biol., 2010;11:59.
    PMID: 20707929 DOI: 10.1186/1471-2199-11-59
    Several genes have been used as housekeeping genes and choosing an appropriate reference gene is important for accurate quantitative RNA expression in real time RT-PCR technique. The expression levels of reference genes should remain constant between the cells of different tissues and under different experimental conditions. The purpose of this study was to determine the effect of different experimental treatments on the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA so that the reliability of GAPDH as reference gene for quantitative real time RT-PCR in human diploid fibroblasts (HDFs) can be validated. HDFs in 4 different treatment groups viz; young (passage 4), senescent (passage 30), H2O2-induced oxidative stress and gamma-tocotrienol (GTT)-treated groups were harvested for total RNA extraction. Total RNA concentration and purity were determined prior to GAPDH mRNA quantification. Standard curve of GAPDH expression in serial diluted total RNA, melting curve analysis and agarose gel electrophoresis were used to determine the reliability of GAPDH as reference gene.
    Matched MeSH terms: Fibroblasts/cytology
  16. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A, et al.
    J Assist Reprod Genet, 2011 Apr;28(4):291-301.
    PMID: 21384252 DOI: 10.1007/s10815-011-9552-6
    Direct reprogramming of somatic cells into induced pluripotent stem (iPS) cells has emerged as an invaluable method for generating patient-specific stem cells of any lineage without the use of embryonic materials. Following the first reported generation of iPS cells from murine fibroblasts using retroviral transduction of a defined set of transcription factors, various new strategies have been developed to improve and refine the reprogramming technology. Recent developments provide optimism that the generation of safe iPS cells without any genomic modification could be derived in the near future for the use in clinical settings. This review summarizes current and evolving strategies in the generation of iPS cells, including types of somatic cells for reprogramming, variations of reprogramming genes, reprogramming methods, and how the advancement iPS cells technology can lead to the future success of reproductive medicine.
    Matched MeSH terms: Fibroblasts/cytology
  17. Mamidi MK, Pal R, Mori NA, Arumugam G, Thrichelvam ST, Noor PJ, et al.
    J Cell Biochem, 2011 May;112(5):1353-63.
    PMID: 21337383 DOI: 10.1002/jcb.23052
    Among the different parameters governing the successful derivation and expansion of human embryonic stem cells (hESC), feeder layers play the most important role. Human feeders in form of human mesenchymal stromal cells (hMSCs) and human foreskin fibroblasts (HFFs) lay the foundation for eradication of animal-derived hESC culture system. In this study we explored the potential of human foreskin derived mesenchymal like stromal cells (HF-MSCs) to support self renewal and pluripotency of hESC. The MSCs isolated from human foreskin were found to be resistant to standard concentrations and duration of mitomycin-C treatment. Growth pattern, gene profiling (Oct-4, Nanog, Sox-2, Rex-1), cytoskeletal protein expression (vimentin, nestin) and tri-lineage differentiation potential into adipocytes, chondrocytes and osteocytes confirmed their mesenchymal stromal cell status. Further, the HF-MSCs were positive for CD105, CD166, CD73, CD44, CD90, SSEA-4, and negative for CD34, CD45, HLA-DR cell-surface markers and were found to exhibit BM-MSC-like characteristics. hESC lines co-cultured with HF-MSC feeders showed expression of expected pluripotent transcription factors Oct-4, Nanog, Sox-2, GDF-3, Rex-1, STELLAR, ABCG2, Dppa5, hTERT; surface markers SSEA-4, TRA-1-81 and maintained their cytogenetic stability during long term passaging. These novel feeders also improved the formation of embryoid bodies (EBs) from hESC which produced cell types representing three germ layers. This culture system has the potential to aid the development of clinical-grade hESCs for regenerative medicine and drug screening. Further, we envisage foreskin can serve as a valuable source of alternative MSCs for specific therapeutic applications.
    Matched MeSH terms: Fibroblasts/cytology
  18. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
    Matched MeSH terms: Fibroblasts/cytology
  19. Nurul Syazana MS, Halim AS, Gan SH, Shamsuddin S
    PMID: 21943200 DOI: 10.1186/1472-6882-11-82
    Keloid is a type of scar which extends beyond the boundaries of the original wound. It can spread to the surrounding skin by invasion. The use of Tualang honey is a possible approach for keloid treatment. The objective of this study was to determine the antiproliferative effect of methanolic extraction of Tualang honey to primary human keloid fibroblasts and to identify the volatile compounds in methanol extraction of Tualang honey.
    Matched MeSH terms: Fibroblasts/cytology*
  20. Hashim P, Sidek H, Helan MH, Sabery A, Palanisamy UD, Ilham M
    Molecules, 2011;16(2):1310-22.
    PMID: 21278681 DOI: 10.3390/molecules16021310
    Leaves of Centella asiatica (Centella) were analysed for their triterpene composition and bioactivity such as collagen enhancement, antioxidant, anticellulite and UV protection capacity properties. Triterpenes of Centella were measured using HPLC-PAD on an Excil ODS 5 mm (C18) column for the simultaneous determination of asiatic acid, madecassic acid, asiaticoside and madecassoside. Centella was found to contain significant amounts of madecassoside (3.10 ± 4.58 mg/mL) and asiaticoside (1.97 ± 2.65 mg/mL), but was low in asiatic and madecassic acid. The highest collagen synthesis was found at 50 mg/mL of Centella extracts. The antioxidant activity of Centella (84%) was compared to grape seed extract (83%) and Vitamin C (88%). Its lipolytic activity was observed by the release of glycerol (115.9 µmol/L) at 0.02% concentration. Centella extracts exhibited similar UV protection effect to OMC at 10% concentration. In view of these results, the potential application of Centella in food and pharmaceutical industries is now widely open.
    Matched MeSH terms: Fibroblasts/cytology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links