Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Lai JC, Lai HY, Nalamolu KR, Ng SF
    J Ethnopharmacol, 2016 08 02;189:277-89.
    PMID: 27208868 DOI: 10.1016/j.jep.2016.05.032
    ETHNOPHARMACOLOGICAL RELEVANCE: Blechnum orientale Linn. (B. orientale) is a fern traditionally used by the natives as a poultice to treat wounds, boils, ulcers, blisters, abscesses, and sores on the skin.

    AIM OF THE STUDY: To investigate the wound healing ability of a concentrated extract of B. orientale in a hydrogel formulation in healing diabetic ulcer wounds.

    MATERIALS AND METHODS: The water extract from the leaves of B. orientale was separated from the crude methanolic extract and subjected to flash column chromatography techniques to produce concentrated fractions. These fractions were tested for phytochemical composition, tannin content, antioxidative and antibacterial activity. The bioactive fraction was formulated into a sodium carboxymethylcellulose hydrogel. The extract-loaded hydrogels were then characterized and tested on excision ulcer wounds of streptozotocin-induced diabetic rats. Wound size was measured for 14 days. Histopathological studies were conducted on the healed wound tissues to observe for epithelisation, fibroblast proliferation and angiogenesis. All possible mean values were subjected to statistical analysis using One-way ANOVA and post-hoc with Tukey's T-test (P<0.05).

    RESULTS: One fraction exhibited strong antioxidative and antibacterial activity. The fraction was also highly saturated with tannins, particularly condensed tannins. Fraction W5-1 exhibited stronger antioxidant activity compared to three standards (α-Tocopherol, BHT and Trolox-C). Antibacterial activity was also present, and notably bactericidal towards Methicillin-resistant Staphylococcus aureus (MRSA) at 0.25mg/ml. The extract-loaded hydrogels exhibited shear-thinning properties, with high moisture retention ability. The bioactive fraction at 4% w/w was shown to be able to close diabetic wounds by Day 12 on average. Other groups, including controls, only exhibited wound closure by Day 14 (or not at all). Histopathological studies had also shown that extract-treated wounds exhibited re-epithelisation, higher fibroblast proliferation, collagen synthesis, and angiogenesis.

    CONCLUSION: The ethnopharmacological effects of using B. orientale as a topical treatment for external wounds was validated and was also significantly effective in treating diabetic ulcer wounds. Thus, B. orientale extract hydrogel may be presented as a potential treatment for diabetic ulcer wounds.

    Matched MeSH terms: Fibroblasts/pathology
  2. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Cancer Invest, 2020 Sep;38(8-9):445-462.
    PMID: 32713210 DOI: 10.1080/07357907.2020.1802474
    Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  3. Kumcu E, Unverdi H, Kaymaz E, Oral O, Turkbey D, Hucmenoglu S
    Malays J Pathol, 2018 Aug;40(2):137-142.
    PMID: 30173230
    INTRODUCTION: Breast cancer is still a serious health problem in 21st century and diagnosis, treatment and prognosis of this malignant disease are subject to many research. While cancer research has been focused on tumour cells primarily, recent studies showed that tumour stroma contribute to carcinogenesis as well as tumour cells. Especially fibroblasts adjacent to epithelial tumour cells are not ordinary fibroblasts and play the critical role. Studies showed that these cancer associated fibroblasts (CAFs) have different genetic profile and protein expression. One of the differently expressed molecules recently found is podoplanin. Podoplanin, utilised as a lymphatic endothelial marker, is found to be expressed in CAFs. The aim of this study is to evaluate the relationship between the stromal expression of podoplanin in invasive breast carcinoma and clinicopathological parameters.

    MATERIALS & METHODS: Podoplanin expression was evaluated immunohistochemically in 153 breast cancers. Tumours with ≥ 10% distinct cytoplasmic podoplanin staining in CAFs were considered as positive.

    RESULTS: In 65.3% of analysed tumours, podoplanin expression was found positive in CAFs. According to our results, podoplanin positive CAFs correlated significantly with tumour size (p= 0.012), tumour grade (p= 0.032) and cerbB2 score (p= 0.032).

    DISCUSSION: Our results suggest that podoplanin expression by CAFs could predict poor patient outcome in breast carcinoma.

    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  4. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: Fibroblasts/pathology
  5. Musa M
    Adv Med Sci, 2020 Mar;65(1):163-169.
    PMID: 31972467 DOI: 10.1016/j.advms.2019.12.001
    Besides malignant cells, the tumour microenvironment consists of various stromal cells such as cancer-associated fibroblasts (CAFs) and myofibroblasts. Accumulation of heterogeneous populations of stromal cells in solid tumours is associated with lower survival rates and cancer recurrence in patients. Certain limitations presented by conventional experimental designs and techniques in cancer research have led to poor understanding of the fundamental basis of cancer niche. Recent developments in single-cell techniques allow more in-depth studies of the tumour microenvironment. Analyses at the single-cell level enables the detection of rare cell types, characterization of intra-tumour cellular heterogeneity and analysis of the lineage output of malignant cells. This subsequently, provides valuable insights on better diagnostic methods and treatment avenues for cancer. This review explores the recent advancements and applications of single-cell technologies in cancer research pertaining to the study of stromal fibroblasts in the microenvironment of solid tumours.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology*
  6. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Fibroblasts/pathology
  7. Alafiatayo AA, Lai KS, Ahmad S, Mahmood M, Shaharuddin NA
    Genomics, 2020 01;112(1):484-493.
    PMID: 30946891 DOI: 10.1016/j.ygeno.2019.03.011
    Exposing the skin to solar UV radiation induces cascades of signaling pathways and biological alterations such as redox imbalance, suppression of antioxidant genes and programmed cell death. Therefore, the aim of this study was to use RNA-Seq to unravel the effects of UV radiation on Normal Human Adult Fibroblast cells (NHDF). Cells were exposed to UV (20 mJ/cm2 for 3 mins) and incubated for 24 h. Total mRNA from the cells generated libraries of 72,080,648 and 40,750,939 raw reads from UV-treated and control cells respectively. Of the differentially expressed genes (DEGs) produced 2,007 were up-regulated and 2,791 were down-regulated (fold change ≥2, p 
    Matched MeSH terms: Fibroblasts/pathology
  8. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling KH, et al.
    Cell Rep, 2019 01 29;26(5):1112-1127.e9.
    PMID: 30699343 DOI: 10.1016/j.celrep.2019.01.023
    The molecular basis of the earliest neuronal changes that lead to Alzheimer's disease (AD) is unclear. Here, we analyze neural cells derived from sporadic AD (SAD), APOE4 gene-edited and control induced pluripotent stem cells (iPSCs). We observe major differences in iPSC-derived neural progenitor (NP) cells and neurons in gene networks related to neuronal differentiation, neurogenesis, and synaptic transmission. The iPSC-derived neural cells from SAD patients exhibit accelerated neural differentiation and reduced progenitor cell renewal. Moreover, a similar phenotype appears in NP cells and cerebral organoids derived from APOE4 iPSCs. Impaired function of the transcriptional repressor REST is strongly implicated in the altered transcriptome and differentiation state. SAD and APOE4 expression result in reduced REST nuclear translocation and chromatin binding, and disruption of the nuclear lamina. Thus, dysregulation of neural gene networks may set in motion the pathologic cascade that leads to AD.
    Matched MeSH terms: Fibroblasts/pathology
  9. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Fibroblasts/pathology
  10. Siar CH, Ishak I, Ng KH
    J Oral Pathol Med, 2015 Jan;44(1):51-8.
    PMID: 25059841 DOI: 10.1111/jop.12203
    Ameloblastoma is a benign but locally infiltrative odontogenic epithelial neoplasm with a high risk for recurrence. Podoplanin, a lymphatic endothelium marker, putatively promotes collective cell migration and invasiveness in this neoplasm. However, its role in the recurrent ameloblastoma (RA) remains unclear. As morphological, signaling, and genetic differences may exist between primary and recurrent tumors, clarification of their distribution patterns is of relevance.
    Matched MeSH terms: Fibroblasts/pathology
  11. Law JX, Chowdhury SR, Saim AB, Idrus RBH
    J Tissue Viability, 2017 Aug;26(3):208-215.
    PMID: 28615133 DOI: 10.1016/j.jtv.2017.05.003
    Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 104 cells/cm2) and fibroblasts (3 × 104 cells/cm2) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP.
    Matched MeSH terms: Fibroblasts/pathology
  12. Jamal J, Roebuck MM, Lee SY, Frostick SP, Abbas AA, Merican AM, et al.
    Int J Biochem Cell Biol, 2020 09;126:105800.
    PMID: 32673644 DOI: 10.1016/j.biocel.2020.105800
    OBJECTIVES: To compare mechanobiological response of synovial fibroblasts (SFb) from OA patient cohorts under mechanical load and inflammatory stressors for better understanding of SFb homeostatic functions.

    METHODS: Primary SFb isolated from knee synovium of OA obese (OA-ob:SFb), OA-pre-obese (OA-Pob:SFb), non-OA arthroscopic (scope:SFb), and non-OA arthroscopic with cartilage damage (scope-CD:SFb) were exposed to OA-conditioned media (OACM), derived from OA obese (OA-ob:CM), OA-pre-obese (OA-Pob:CM), and mechanical stretch at either 0 %, 6 % or 10 % for 24 h. Differences in the mRNA levels of genes involved in extracellular matrix production, inflammation and secretory activity were measured.

    RESULTS: Despite the significant BMI differences between the OA-ob and OA-Pob groups, OA-Pob has more patients with underlying dyslipidaemia, and low-grade synovitis with higher levels of secreted proteins, CXCL8, COL4A1, CCL4, SPARC and FGF2 in OA-Pob:CM. All primary SFb exhibited anti-proliferative activity with both OA-CM. Mechanical stretch stimulated lubricin production in scope:SFb, higher TGFβ1 and COL1A1 expressions in scope-CD:SFb. OA-Pob:CM stimulated greater detrimental effects than the OA-ob:CM, with higher pro-inflammatory cytokines, IL1β, IL6, COX2 and proteases such as aggrecanases, ADAMTS4 and ADAMTS5, and lower ECM matrix, COL1A1 expressions in all SFb. OA-ob:SFb were unresponsive but expressed higher pro-inflammatory cytokines under OA-Pob:CM treatment.

    CONCLUSION: Both mechanical and inflammatory stressors regulate SFb molecular functions with heterogeneity in responses that are dependent on their pathological tissue of origins. While mechanical stretch promotes a favorable effect with enhanced lubricin production in scope:SFb and TGFβ1 and COL1A1 in scope-CD:SFb, the presence of excessively high OA-associated inflammatory mediators in OA-Pob:CM, predominantly SPARC, CXCL8 and FGF2 drive all SFb regardless of pathology, towards greater pro-inflammatory activities.

    Matched MeSH terms: Fibroblasts/pathology*
  13. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
    Matched MeSH terms: Fibroblasts/pathology*
  14. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Fibroblasts/pathology*; Myofibroblasts/pathology*
  15. Lan YW, Chen CM, Chong KY
    Methods Mol Biol, 2021;2269:83-92.
    PMID: 33687673 DOI: 10.1007/978-1-0716-1225-5_6
    A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-β1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.
    Matched MeSH terms: Fibroblasts/pathology
  16. Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3099-3107.
    PMID: 37774061 DOI: 10.31557/APJCP.2023.24.9.3099
    BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts.

    AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.

    METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.

    RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).

    CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.

    Matched MeSH terms: Fibroblasts/pathology
  17. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Fibroblasts/pathology
  18. Subramaniam R, Mani MP, Jaganathan SK
    Cardiovasc Eng Technol, 2018 09;9(3):503-513.
    PMID: 29700782 DOI: 10.1007/s13239-018-0357-y
    In this study, a small vascular graft based on polyurethane (PU) blended with chitosan (Ch) nanoparticles was fabricated using electrospinning technique. Initially, the chitosan nanoparticles were synthesized using ionic gelation method. UV-Vis spectrophotometer confirmed the presence of synthesized Ch nanoparticles by exhibiting absorption peak at 288 nm and the Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the existence of the chitosan. Further, the synthesized Ch nanoparticles showed size diameter in the range of 134 ± 58 nm as measured using ImageJ. In the electrospun PU/chitosan graft, the fiber diameter and pore size diameter was found to be reduced compared to the pure PU owing to incorporation of chitosan into PU matrix. The FTIR spectrum revealed the presence of chitosan in the prepared nanocomposite membrane by the formation of the hydrogen bond and peak shift of CH and NH stretching. Moreover, the contact angle measurements revealed that the prepared graft showed decreased contact angle indicating hydrophilic nature compared to the pristine PU. The cytocompatibility studies revealed the non-toxic behavior of the fabricated graft. Hence, the prepared graft exhibiting significant physiochemical and non-toxic properties may be a plausible candidate for cardiovascular graft applications.
    Matched MeSH terms: Fibroblasts/pathology
  19. Foroozandeh P, Aziz AA, Mahmoudi M
    ACS Appl Mater Interfaces, 2019 Oct 30;11(43):39672-39687.
    PMID: 31633323 DOI: 10.1021/acsami.9b15533
    Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.
    Matched MeSH terms: Fibroblasts/pathology
  20. Siar CH, Nakano K, Han PP, Nagatsuka H, Ng KH, Kawakami T
    J Oral Pathol Med, 2010 Aug 1;39(7):552-8.
    PMID: 20337864 DOI: 10.1111/j.1600-0714.2009.00871.x
    In mammals, the Notch gene family encodes four receptors (Notch1-4), and all of them are important for cell fate decisions. Notch signaling pathway plays an essential role in tooth development. The ameloblastoma, a benign odontogenic epithelial neoplasm, histologically recapitulates the enamel organ at bell stage. Notch has been detected in the plexiform and follicular ameloblastoma. Its activity in the desmoplastic ameloblastoma is unknown.
    Matched MeSH terms: Fibroblasts/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links