Displaying publications 1 - 20 of 172 in total

Abstract:
Sort:
  1. Zurainee MN, Khairul Anuar A, Khatijah O, Sri Suriati A, Noraishah S
    JUMMEC, 1998;3:63-63.
    We describe the results of serology for parasitic infection of 250 foreign workers who were seen at the University of Malaya Medical Centre, UMMC during 7-months period. The 250 foreign workers participated included 114 from Indonesia, 142 from Bangladesh, two from Myanmar and two from Pakistan. Blood samples were taken from these workers and eight tests (amoebiasis, echinococcosis, filariasis, leishmaniasis, malaria, schistosomiasis, toxoplasmosis, and trypanosomiasis) were performed on serum. Among the 250 sera tested, 92 (36.8%) were found to be positive for at least one parasitic infection. There was one case where the serum was found positive for 5 tests. The most common antibody detected in those positive sera was antibody for toxoplasma (80.%), followed by filaria (32.8%) and amoeba (30%). Other tests showed low percentage of infection with schistosomiasias, 10%; echinococcosis, 6% and malaria, 3.6%. None of the foreign workers were found positive for leishmaniasis or trypanosomiasias.
    Matched MeSH terms: Filariasis
  2. Zahedi M, White GB
    Trop. Med. Parasitol., 1994 Mar;45(1):27-32.
    PMID: 8066378
    The filaria vector competence of Anopheles stephensi was compared with Brugia-susceptible Aedes aegypti Liverpool strain, An. gambiae Badagry Lagos strain and An. dirus Perlis Malaysia strain. An. stephensi ingested more Brugia pahangi microfilariae, had the highest infectivity rate and yielded more infective mosquitoes than the other two anopheline species. The overall vector competence of An. stephensi was 0.13 times that of Ae. aegypti, 0.62 times that of An. gambiae and 2.17 times that of An. dirus. However, heavy mortality among infected An. stephensi in the present investigation indicates that the filaria vectorial capacity of the mosquito might be limited epidemiologically. The relationship between filaria vector competence and mosquito foregut armature is discussed. It was observed that the relative vector competence of the three anopheline species tested was in the same order as their relative degrees of armature elaboration. The converse would be expected if foregut armatures really give partial protection to the mosquitoes against filarial infection. It is suggested that high host microfilariae density favours larval survival proportional to the degree of armature development in Anopheles (Cellia) species.
    Matched MeSH terms: Filariasis/transmission
  3. Yap LF, Ramachandran CP, Balasingam E
    Med J Malaya, 1968 Dec;23(2):118-22.
    PMID: 4240821
    Matched MeSH terms: Filariasis/epidemiology*
  4. Yap EH, Ho BC, Singh M, Kang KL, Lim BL
    J Helminthol, 1975 Dec;49(4):263-9.
    PMID: 1206216
    Breinlia booliati exhibited nocturnal subperiodicity in its natural host, Rattus sabanus in contrast to experimentally infected laboratory-reared albine rats which showed irregular fluctuations of microfilariae throughout the 24 hour cycle. All the infected albino rats showed a prepatent period between 11-14 weeks postinoculation. Three patterns of microfilaraemia were discerned during the course of infection 38/49 rats displayed a single peak, 4/49 displayed 2 peaks about 12-15 weeks apart and 7/49 showed a sustained high plateau-like pattern of microfilaraemia. Cortisone had no effect on microfilarial levels when administered to rats near postpatency and some at postpatency.
    Matched MeSH terms: Filariasis/parasitology; Filariasis/veterinary*
  5. Yadav M
    PMID: 2609207
    Serum IgG levels and complement C3 levels were assayed on Day 0, 1, 3-4, 7 and 56-70 post-treatment with diethylcarbamizine citrate (DEC) in a series to 26 patients with Brugia malayi infection and 6 volunteers without infection. On treatment, the microfilariae were cleared from the blood within 24 hours. The eosinophils decreased dramatically on Day 1 post-treatment but increased rapidly by Day 4 to 7 and then dropped to normal levels in 45 days. The serum IgG mean levels decreased briefly following treatment with DEC but then returned to original levels. However, the complement C3 levels gradually increased over the 2 months period of study reaching statistical significance levels (p less than 0.01) in patients with initial high blood microfilariae. The observation suggests that Brugia malayi infection probably induces a high rate of synthesis of complement C3 and this process continued in the post-treatment phase. Since, DEC treatment did not cause a decrease in complement C3 with the elimination of blood microfilariae, it would appear that the complement C3 is consumed following antibody attachment to the microfilariae as they enter the blood circulation.
    Matched MeSH terms: Filariasis/drug therapy*
  6. Wong MM, Guest MF
    Trans R Soc Trop Med Hyg, 1969;63(6):796-800.
    PMID: 5368008
    Matched MeSH terms: Filariasis/blood; Filariasis/complications; Filariasis/immunology*; Filariasis/epidemiology
  7. Wilson T
    Bull World Health Organ, 1969;41(2):324-9.
    PMID: 5308708
    Matched MeSH terms: Filariasis/diagnosis*
  8. Wan Omar A, Khairul Anuar A, Sulaiman O, Rahmah N, Manaf A, Rahimah A
    JUMMEC, 2000;5:41-44.
    Parasitological and serological investigations for lymphatic filariasis were performed on 450 immigrants detained at the lmmigration Centre at Semenyih, Selangor, West Malaysia. The country of origin of these immigrants were Indonesia, The Philippines, Myanmar, Bangladesh, India and Pakistan. Brugia malayi adult worm homogenate (BmAH) antigen was used for the detection of antiifilarial IgG. A monoclonal antibody-based ELISA (MAb.XC3-ELISA) specific for filarial circulating antigens and non-phosphorylcholine reactive was used to detect antigenemia in these immigrants. Parasitologically 67 (14.89 %) were positive for W. bancrofti and 54 (12.0%) for Brugia malayi. Serologically 63% had antifilarial IgG titre to the BmAH antigen. While Bancroftian filariasis is now unknown in Peninsular Malaysia, the potential of it to be reintroduced into Peninsular Malaysia by the immigrant population is discussed. KEYWORDS: Lymphatic filariasis, immigratits, antifilarial IgG, antigenemia
    Matched MeSH terms: Filariasis
  9. WILSON T
    Trans R Soc Trop Med Hyg, 1961 Mar;55:107-34.
    PMID: 13785709
    Matched MeSH terms: Filariasis/epidemiology*
  10. WHARTON RH, LAING AB, CHEONG WH
    Ann Trop Med Parasitol, 1963 Jun;57:235-54.
    PMID: 14042655
    Matched MeSH terms: Filariasis*
  11. WHARTON RH, EDESON JF, WILSON T, REID JA
    Ann Trop Med Parasitol, 1958 Jul;52(2):191-205.
    PMID: 13559957
    Matched MeSH terms: Filariasis/prevention & control*
  12. Vythilingam I
    Front Physiol, 2012;3:115.
    PMID: 22557977 DOI: 10.3389/fphys.2012.00115
    Malaria and filariasis still continue to pose public health problems in developing countries of the tropics. Although plans are in progress for the elimination of both these parasitic vector borne diseases, we are now faced with a daunting challenge as we have a fifth species, Plasmodium knowlesi a simian malaria parasite affecting humans. Similarly in peninsular Malaysia, filariasis was mainly due to Brugia malayi. However, we now see cases of Wuchereria bancrofti in immigrant workers coming into the country. In order to successfully eliminate both these diseases we need to know the vectors involved and introduce appropriate control measures to prevent the diseases occurring in the future. As for knowlesi malaria it is still uncertain if human to human transmission through mosquito bites is occurring. However, P. knowlesi in human is not a rare occurrence anymore and has all the characteristics of a pathogen spreading due to changes in the ecosystem, international travel, and cross border migration. This has created a more complex situation. In order to overcome these challenges we need to revamp our control measures. This paper reviews the vectors of malaria and filariasis in Southeast Asia with special emphasis on P. knowlesi and W. bancrofti in Malaysia and their control strategies.
    Matched MeSH terms: Filariasis
  13. Vythilingam I, Chiang GL, Lee HL, Singh KI
    PMID: 1363679
    Matched MeSH terms: Filariasis/prevention & control; Filariasis/transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links