Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Freeman MA, Kristmundsson Á
    Parasit Vectors, 2018 Oct 22;11(1):551.
    PMID: 30348210 DOI: 10.1186/s13071-018-3087-y
    BACKGROUND: The myxosporean Myxidium giardi Cépède, 1906 was described infecting the kidney of the European eel, Anguilla anguilla (L.), having spindle-shaped myxospores and terminal sub-spherical polar capsules. Since then, numerous anguillid eels globally have been documented to have similar Myxidium infections. Many of these have been identified using the morphological features of myxospores or by the location of infection in the host, and some have been subsequently synonymised with M. giardi. Therefore, it is not clear whether M. giardi is a widely distributed parasite, infecting numerous species of eels, in multiple organs, or whether some infections represent other, morphologically similar but different species of myxosporeans. The aim of the present study was to assess the status of M. giardi infections in Icelandic eels, and related fish hosts in Malaysia and to use spore morphology and molecular techniques to evaluate the diversity of myxosporeans present.

    RESULTS: The morphologies of the myxospores from Icelandic eels were very similar but the overall dimensions were significantly different from the various tissue locations. Myxospores from the kidney of the Malaysian tarpon, Megalops cyprinoides (Broussonet), were noticeably smaller. However, the SSU rDNA sequences from the different tissues locations in eels, were all very distinct, with percentage similarities ranging from 92.93% to as low as 89.8%, with the sequence from Malaysia being even more dissimilar. Molecular phylogenies consistently placed these sequences together in a clade that we refer to as the Paramyxidium clade that is strongly associated with the Myxidium clade (sensu stricto). We erect the genus Paramyxidium n. g. (Myxidiidae) to accommodate these histozoic taxa, and transfer Myxidium giardi as Paramyxidium giardi Cépède, 1906 n. comb. as the type-species.

    CONCLUSIONS: There is not a single species of Myxidium (M. giardi) causing systemic infections in eels in Iceland. There are three species, confirmed with a robust phylogeny, one of which represents Paramyxidium giardi n. comb. Additional species probably exist that infect different tissues in the eel and the site of infection in the host fish is an important diagnostic feature for this group (Paramyxidium n. g. clade). Myxospore morphology is generally conserved in the Paramyxidium clade, although actual spore dimensions can vary between some species. Paramyxidium spp. are currently only known to infect fishes from the Elopomorpha.

    Matched MeSH terms: Fish Diseases/parasitology*
  2. Székely C, Borkhanuddin MH, Shaharom F, Embong MS, Molnár K
    Syst Parasitol, 2013 Nov;86(3):293-9.
    PMID: 24163029 DOI: 10.1007/s11230-013-9448-1
    Culturing fishes in marine cages is a rapidly developing area of marine aquaculture. The Asian seabass Lates calcarifer (Bloch) is a fast growing good quality fish that is readily cultured in intensive systems in the South Asian region and in Malaysia in particular. Although several papers have been published to date on viral, bacterial, parasitic and fungal organisms causing diseases in the Asian seabass, the occurrence of a coccidian infection in this species has only recently been recorded. We collected sporulated and unsporulated oöcysts of a new species of Goussia Labbé, 1986, from the mucus covering the epithelium of the intestine of L. calcarifer. This paper provides a description of Goussia kuehae n. sp. Sporulated oöcysts of this species are ellipsoidal, 37-40 μm in length and 28-30 μm in width. The ellipsoidal sporocysts are relatively small, 15.2-17 × 5.7-8 μm, and located loosely in the oöcyst. There are residual bodies both in the oöcysts and the sporocysts. Goussia kuehae n. sp. differs from all known species of Goussia in the large size of the oöcysts and in having two types of oöcyst residuum.
    Matched MeSH terms: Fish Diseases/parasitology*
  3. Freeman MA
    Parasitology, 2009 Aug;136(9):967-80.
    PMID: 19549352 DOI: 10.1017/S0031182009006507
    Unusual tumour-like pathologies caused by mysterious cells termed 'X-cells' have been reported from numerous fish groups worldwide. After nearly 100 years of research, the tumour-like growths have recently been shown to be caused by a protozoan parasite. In the present study, histopathology and small subunit ribosomal DNA (SSU rDNA) sequences are used to assess whether the X-cell parasite infecting Atlantic dab Limanda limanda L. is distinct from the X-cell parasite infecting Japanese flounder and goby, and to determine their systematic position within the protists. SSU rDNA from Scottish dab was 89.3% and 86.7% similar to Japanese X-cell sequences from flounder and goby respectively, indicating that the parasite infecting dab in the Atlantic is distinct from the Pacific species. Histological studies revealed significant gill pathology and demonstrated the precise location of the parasites within the gill tissues using specific in situ hybridization probes. Phylogenetic analyses showed that the X-cell parasites from Scotland and Japan form a monophyletic group within the Myzozoa, and are basal alveolates. However, ultrastructure of X-cells from dab fails to confirm this systematic placement.
    Matched MeSH terms: Fish Diseases/parasitology*
  4. Lim LH, Justine JL
    Folia Parasitol., 2007 Sep;54(3):203-7.
    PMID: 19245191
    Sixteen labrid species, including four Bodianus spp., were examined in New Caledonia (South Pacific) and monogeneans were found only on Bodianus perditio (Quoy et Gaimard). This species, Haliotrema banana sp. n., is the second Haliotrema species to be described from the labrids, the first being Haliotrema bodiani Yamaguti, 1968 from Bodianus albotaeniatus (Valenciennes), previously designated as B. bilunulatus (Lacépède). The new species is similar to H. bodiani in soft reproductive parts but differs from it in the morphologies of the hard haptoral parts, mainly in the shape of the dorsal bar (bar-shaped vs V-shaped in H. bodiani) and ventral bar. It is similar to Haliotrema spirale Yamaguti, 1968 and Haliotrema minutospirale Yamaguti, 1968 in the shape of the anchors and bars but differs from them in the detailed structures of the copulatory organ and vaginal system.
    Matched MeSH terms: Fish Diseases/parasitology*
  5. Lim LH, Timofeeva TA, Gibson DI
    Syst Parasitol, 2001 Nov;50(3):159-97.
    PMID: 11590306
    This is a catalogue and discussion of the known dactylogyridean monogenean genera of siluriform fishes of the Old World. Of a total of 38 nominal genera, only 19 are considered valid. Seventeen of these 19 genera are currently in the Ancyrocephalidae (containing the Ancyrocephalinae and Ancylodiscoidinae), whilst the other two (Neocalceostoma and Neocalceostomoides) are in the Neocalceostomatidae. The 17 genera are Anchylodiscus, Ancylodiscoides, Bagrobdella, Bifurcohaptor, Bychowskyella, Chauhanellus, Cornudiscoides, Hamatopeduncularia, Mizelleus, Paraquadriacanthus, Pseudancylodiscoides, Protoancylodiscoides, Quadriacanthus, Schilbetrema, Schilbetrematoides, Synodontella and Thaparocleidus. Clariotrema Long, 1981 and Neobychowskyella Ma, Wang & Li, 1983 are considered synonyms of Bychowskyella Akhmerov, 1952, Anacornuatus Dubey, Gupta & Agarwal, 1992 is considered a synonym of Quadriacanthus Paperna, 1961, Mizellebychowskia Gupta & Sachdeva, 1990 is considered a synonym of Neocalceostoma Tripathi, 1959 and Hargitrema Tripathi, 1959 is treated as a synonym of Hamatopeduncularia Yamaguti, 1953. It is proposed that the Ancylodiscoidinae be raised to family status within the order Dactylogyridea to accommodate these 17 'ancyrocephalid' genera from siluriforms, together with Malayanodiscoides and Notopterodiscoides from notopterids. A key and the diagnostic characteristics of the 19 recognised dactylogyridean genera from catfishes plus two from notopterids, together with a list of species and synonyms, are included. New combinations made in this work are Thaparocleidus avicularia (Chen, 1987) n. comb., T. calyciflorus (Chen, 1987) n. comb., T. choanovagina (Luo & Lang, 1981) n. comb., T. dissimilis (Chen, 1988) n. comb., T. leiocassis (Reichenbach-Klinke, 1959) n. comb., T. meticulosa (Chen, 1987) n. comb., T. parasoti (Zhao & Ma, 1999) n. comb., T. persculpus (Chen, 1987) n. comb., T. valga (Chen, 1987) n. comb. and T. wulingensis (Yao & Wang, 1997) n. comb. [all from Silurodiscoides] and Bychowskyella glyptothoraci (Ma, Wang & Li, 1983) n. comb. [from Neobychowskyella].
    Matched MeSH terms: Fish Diseases/parasitology*
  6. Lim LH
    J. Helminthol., 2015 May;89(3):307-16.
    PMID: 24698519 DOI: 10.1017/S0022149X1400008X
    A new genus of the Monogenea, Teraplectanum n. g., is proposed for two new species of diplectanids found on the gills of Terapon theraps Cuvier collected off Carey Island, Peninsular Malaysia. The genus is based on a unique arrangement of the male reproductive system. In the new species spermatozoa stored in the seminal vesicle and secretions stored in the prostatic reservoir are transferred into, and mixed to form semen within, a special sclerotized auxiliary piece (SAP), and not within the copulatory tube as occurs in the majority of monogeneans. Teraplectanum species also possess a unique sclerotized vaginal loop through which the vaginal tube passes en route from the vaginal pore to the seminal receptacle. The two new species are Teraplectanum crassitubus n. sp. (type species) and T. angustitubus n. sp. They differ from each other mainly in the morphology of their copulatory tube: in T. crassitubus, the proximal region of this tube is thicker compared to the slender proximal region in T. angustitubus, although in both cases the tube tapers and twists distally. Of the known diplectanid species, only Diplectanum undulicirrosum Zhang et al., 2000 (currently considered incertae sedis) possesses such sclerotized hard parts, which suggests the same type of arrangement of the male reproductive system. Consequently, D. undulicirrosum is re-assigned to this new genus as Teraplectanum undulicirrosum (Zhang et al., 2000) n. comb. The copulatory tube of T. undulicirrosum is similar to the slender, undulating copulatory tube of T. angustitubus but does not taper distally as in the latter species.
    Matched MeSH terms: Fish Diseases/parasitology*
  7. Ismail N, Ohtsuka S, Maran BA, Tasumi S, Zaleha K, Yamashita H
    Parasite, 2013;20:42.
    PMID: 24165196 DOI: 10.1051/parasite/2013041
    The complete life cycle of a pennellid copepod Peniculus minuticaudae Shiino, 1956 is proposed based on the discovery of all post-embryonic stages together with the post-metamorphic adult females infecting the fins of threadsail filefish Stephanolepis cirrhifer (Monacanthidae) cultured in a fish farm at Ehime Prefecture, Japan. The hatching stage was the infective copepodid. The life cycle of P. minuticaudae consists of six stages separated by moults: the copepodid, four chalimi and adult. In this study, the adult males were observed frequently in precopulatory amplexus with various stages of females however, copulation occurs only between adults. Fertilized pre-metamorphic adult females carrying spermatophores may detach from the host and settle again before undergoing massive differential growth into the post-metamorphic adult female. Comparison of the life cycle of P. minuticaudae has been made with three known pennellids: Lernaeocera branchialis (Linnaeus, 1767), Cardiodectes medusaeus (Wilson, 1908) and Lernaeenicus sprattae (Sowerby, 1806). Among the compared species, P. minuticaudae is the first ectoparasitic pennellid to be discovered to complete its life cycle on a single host without any change in infection site preferences between infective copepodid and fertilized pre-metamorphic female.
    Matched MeSH terms: Fish Diseases/parasitology*
  8. Soo OY, Lim LH
    J. Helminthol., 2015 Mar;89(2):131-49.
    PMID: 24148150 DOI: 10.1017/S0022149X13000655
    Ligophorus belanaki n. sp. and Ligophorus kederai n. sp. are described from Liza subviridis Valenciennes, 1836 and Valamugil buchanani Bleeker, 1854, respectively. Ligophorus kederai n. sp. has fenestrated ventral anchors, while in L. belanaki n. sp. the ventral anchor is not fenestrated. Ligophorus belanaki n. sp. is similar to L. careyensis, one of its coexisting congeners, in the overall shape and size of hard parts, but differs in having a flat median piece in the structure of the AMP (antero-median protuberance of the ventral bar), copulatory organ with non-ornamented initial part and longer vaginal tube, compared to raised median piece in the AMP, ornamented initial part and comparatively shorter vaginal tube in L. careyensis. Ligophorus kederai n. sp. is similar to L. fenestrum, a coexisting congener, in having fenestrated ventral anchors, but differs in having longer points and narrower base. Ligophorus fenestrum, unlike L. kederai n. sp., also possesses fenestrated dorsal anchors. The principal component analysis (PCA) scatterplots indicate that the two new and eight known Ligophorus species from Malaysian mugilids can be differentiated based on the morphometries of their anchors, ventral bars and copulatory organ separately and when combined together. Numerical taxonomy (NT) analyses based on Jaccard's Index of Similarity and neighbour-joining clustering, is used to facilitate comparison of these two new species with the 50 known Ligophorus based on morphological and metric characters. The two new species are different from each other and the other 50 species in the overall shapes and sizes of hard parts, as indicated by the NT analyses.
    Matched MeSH terms: Fish Diseases/parasitology*
  9. Borkhanuddin MH, Cech G, Mazelan S, Shaharom-Harrison F, Molnár K, Székely C
    Parasitol Res, 2014 Jan;113(1):29-37.
    PMID: 24096611 DOI: 10.1007/s00436-013-3622-x
    The authors studied the myxosporean infection of wild gobiid fishes (Perciformes: Gobioidei) in the Merang Estuary of Terengganu, Malaysia, and described Myxobolus ophiocarae sp. n. in Ophiocara porocephala. Several myxosporean plasmodia were found intralamellarly within the gill filaments. The spores differed from those of other Myxobolus species previously recorded on gobiid fishes. They were round in valvular view and lens-shaped in sutural view, and had two equal-sized, pyriform polar capsules with polar filaments having six to seven turns. The spores measured 10.34 × 8.79 × 4.53 μm. The 18S rDNA sequence of M. ophiocarae sp. n., based on a contiguous sequence of 1,789 base pairs, differed from any other Myxobolus spp. in GenBank. Phylogenetic analysis of the 18S rDNA gene revealed that this species showed the closest similarity to Myxobolus nagaraensis, Myxobolus lentisuturalis, and Myxobolus cultus.
    Matched MeSH terms: Fish Diseases/parasitology
  10. Kua BC, Choong FC, Leaw YY
    J Fish Dis, 2014 Mar;37(3):201-7.
    PMID: 23941201 DOI: 10.1111/jfd.12087
    The high prevalence (80-100%) of the marine leech Zeylanicobdella arugamensis (De Silva) on cage-cultured Asian sea bass Lates calcarifer (Bloch) led us to investigate the percentage of juvenile leeches hatched from deposited cocoons, survival of juvenile and adult marine leeches at different salinity and temperature. The results showed that the hatching percentage of juvenile leeches was highest at salinity of 30 ppt (32.5 ± 2.8%) followed by 20 ppt (18.0 ± 4.3%) and 10 ppt (12.1 ± 1.4%), respectively. It was found that the adult and juvenile leeches could live up to an average range of 4-7 days at salinity ranging from 10 to 40 ppt. The juvenile leeches were able to hatch at temperature ranging from 25 to 35 °C but unable to hatch at 40 °C. The survival period of adult and juvenile leeches ranged from 11 to 16 days at 25 °C, which was comparatively longer than 5-13 days and 10 h--5 days at 27-30 °C and 35-40 °C, respectively. The study provided the information on the physical parameters of salinity and temperature which are most optimal for the marine leech Z. arugamensis to propagate.
    Matched MeSH terms: Fish Diseases/parasitology*
  11. Schaeffner BC, Beveridge I
    Syst Parasitol, 2013 Sep;86(1):1-31.
    PMID: 23949646 DOI: 10.1007/s11230-013-9435-6
    Sampling of a large number of elasmobranchs from coastal waters off Borneo revealed the presence of five new species of Dollfusiella Campbell & Beveridge, 1994 (Trypanorhyncha: Eutetrarhynchidae), namely D. angustiformis n. sp., D. hemispinosa n. sp., D. spinosa n. sp., D. imparispinis n. sp. and D. parva n. sp. Dollfusiella angustiformis n. sp. is described from the spiral intestines of four species of the dasyatid stingray genus Himantura Müller & Henle from both the Indonesian and Malaysian parts of Borneo. All the other species were obtained from Malaysian Borneo. Dollfusiella hemispinosa n. sp. is described from the spiral intestines of three species of Himantura, whereas D. spinosa n. sp. was obtained from several specimens of Pastinachus solocirostris Last, Manjaji & Yearsley (Dasyatidae) as well as from Taeniura lymma 1 (sensu Naylor et al., 2012) (Dasyatidae), Neotrygon kuhlii 2 (sensu Naylor et al., 2012) (Dasyatidae), and Glaucostegus cf. typus (sensu Naylor et al., 2012) (Rhinobatidae). Dollfusiella imparispinis n. sp. is described from the spiral intestine of a single specimen of Chiloscyllium punctatum Müller & Henle (Hemiscyllidae) from the South China Sea off Sarawak, whereas D. parva n. sp. was obtained from several species of Himantura. Specimens of the five novel taxa possess scoleces covered with enlarged microtriches, a morphological characteristic exhibited by several other congeners. However, the new species differ from all congeners by possessing unique patterns of oncotaxy as well as combinations of additional morphological features. The number of valid species within Dollfusiella is increased to 26. For this reason, a key for the species of Dollfusiella is provided. Furthermore, novel information on hosts and geographic distribution is provided for two previously described species of Dollfusiella, D. michiae (Southwell, 1929) and D. spinulifera (Beveridge & Jones, 2000). The latter species differs slightly from the original description and shows a much higher variability with regard to the lengths of the scolex and muscular bulbs and the number of testes. These variable characters subdivided specimens of D. spinulifera into relatively distinct groups. However, the specimens did not differ in their oncotaxy and are considered to represent a single variable species.
    Matched MeSH terms: Fish Diseases/parasitology*
  12. Leaw YY, Faizah S, Anil C, Kua BC
    Vet Parasitol, 2012 Jul 6;187(3-4):505-10.
    PMID: 22425490 DOI: 10.1016/j.vetpar.2012.02.003
    Snapper had been cultured in Malaysia since 1980 due to the fry availability and the high demand. However, details on the caligids infestation were not properly documented. This study was carried out to determine the prevalence, mean intensity and site preference of Caligus rotundigenitalis (Caligidae, Siphonostomatoida) a parasitic copepod on cage cultured crimson snapper, Lutjanus erythropterus from Bukit Tambun, Penang, Malaysia. A total of 70 specimens of cultured snapper were examined based on different infestation sites such as head, body as well as operculum. The specimens were separated into three groups according to the size of the fish. C. rotundigenitalis was found to be the only species infesting L. erythropterus with the prevalence and the mean intensity of 81.4% and 5.6±4.4, respectively. There was a significant difference between the prevalence of site infestation of the body and inner operculum sites. The prevalence of C. rotundigenitalis was highest on inner operculum of the fish followed by the body and head. However, there was no significant difference in the distribution of C. rotundigenitalis over the different infestation sites derived from the three groups. The information obtained from this study can be used for more effective control measures of ectoparasitic copepod infestation in floating cages.
    Matched MeSH terms: Fish Diseases/parasitology*
  13. Muhd-Faizul HA, Kua BC, Leaw YY
    Vet Parasitol, 2012 Feb 28;184(1):68-72.
    PMID: 21937167 DOI: 10.1016/j.vetpar.2011.08.008
    The Asian seabass is euryhaline, therefore it is interesting to describe the infestation and survival of caligids at varying salinity on the host. In this study, two different brackish water culture systems with monoculture and polyculture practices were investigated for the occurrence of Caligus spp. on Lates calcarifer. Polyculture practices mainly consisted of snapper (Lutjanus spp.), grouper (Epinephelus spp.) and seabass (L. calcarifer), while the monoculture was stocked with only seabass. A total of 777 Caligus spp. specimens were isolated from the sampling in 2009, consisting of three species; Caligus chiastos, Caligus epidemicus and Caligus rotundigenitalis. In 2011, the total specimen was increased to 3110 and two additional species were found; Caligus punctatus and one unknown species (Caligus sp.). A 98.6% of the total examination was represented by C. epidemicus. Constant presence of C. epidemicus was observed throughout the study, regardless the differences in between culturing practices and systems. This species was able to survive within wide salinity range, from 5 to 28 ppt. The other isolated species (C. chiastos, C. punctatus, C. rotundigenitalis and Caligus sp.) were only found infesting in polyculture cages with the salinity ranging from 25 to 28 ppt. Despite accounts for less than 2% of the total specimens, these species may able to produce a challenge for L. calcarifer polyculture farming activity due to their capability for host switching. The present study revealed the potential risk for cross-species transmission in polyculture practices.
    Matched MeSH terms: Fish Diseases/parasitology*
  14. Jensen K, Nikolov P, Caira JN
    Folia Parasitol., 2011 Jun;58(2):95-107.
    PMID: 21776890
    The cestode fauna of the darkspotted numbfish, Narcine maculata (Shaw) (Torpediniformes: Narcinidae), from Malaysian Bomrneo was examined for the first time. This work resulted in the discovery of a new genus and two new species of Anteroporidae (Lecanicephalidea). Sesquipedalapex comicus gen. n., sp. n. was erected on the basis of the peculiarities of its scolex, in particular its possession of an extremely long apical modification of the scolex proper, which readily distinguishes it from the other genus in the family. The genus is also distinct in its possession of acetabula that are in the form of suckers, rather than bothridiate in form. This species was found to deeply embed its elongate apical structure for much of its length within the intestinal mucosa, provoking a papilliform expansion of the outer wall of the spiral intestine at the site of attachment. The second new species, Anteropora klosmamorphis sp. n., is readily distinguished from its congeners on the basis of testis number and bothridial shape. Both new species are hyperapolytic. The diagnosis of Anteroporidae is amended to accommodate both new taxa. This increases the total number of genera in the family to two, and the total number of species to five.
    Matched MeSH terms: Fish Diseases/parasitology*
  15. Lim LH, Tan WB, Gibson DI
    Syst Parasitol, 2010 Jun;76(2):145-57.
    PMID: 20437220 DOI: 10.1007/s11230-010-9242-2
    Monogeneans identified as Sinodiplectanotrema malayanum n. sp. were collected from the fish Pennahia anea (Sciaenidae) off the west coast of Peninsular Malaysia. The new species is recognised on the basis of morphometrical differences in the anchors, marginal hooks and eggs and apparent differences in the 28S rDNA sequence data. The new species possesses features (ovary looping the intestinal caecum, body spines, a vagina and haptoral reservoirs) not noted in the original description of the type and only other species of the genus, S. argyrosomus Zhang, 2001, necessitating the re-assignment of the genus to the Diplectanidae Monticelli, 1903, a move which is supported by 28S rDNA evidence. Sinodiplectanotrema is redefined on the basis of the observation of several features not included in the original diagnosis.
    Matched MeSH terms: Fish Diseases/parasitology*
  16. Piasecki W, Młynarczyk M, Hayward CJ
    Exp Parasitol, 2010 May;125(1):55-62.
    PMID: 19850037 DOI: 10.1016/j.exppara.2009.10.001
    The presently reported study provides a detailed morphological description of the female and the male of a new species of the genus Parabrachiella-Parabrachiella jarai sp. nov. The parasites were sampled from marine fish, silver sillago, Sillago sihama (Perciformes: Sillaginidae), captured in Malaysia in 1994 and Hong Kong in 1995. The new species bears some resemblance to Parabrachiella lata (Song et Chen, 1976) but differs from it in details of second antenna, mandible, and maxilliped. The genus Parabrachiella currently covers 67 species including those recently transferred from Neobrachiella Kabata, 1979. An amended generic diagnosis is proposed for Parabrachiella and Thysanote. Some members of Parabrachiella are herewith transferred to Thysanote and some Thysanote are now placed in Parabrachiella.
    Matched MeSH terms: Fish Diseases/parasitology*
  17. Lim LH, Gibson DI
    Syst Parasitol, 2008 Jul;70(3):191-213.
    PMID: 18535790 DOI: 10.1007/s11230-008-9137-7
    One new and four previously described species of Triacanthinella Bychowsky & Nagibina, 1968 (Monogenea) were collected from the tripodfishes Triacanthus biaculeatus and Tripodichthys blochii off Peninsular Malaysia. Triacanthinella lumutensis n. sp. from Tripodichthys blochii off Lumut, Selangor is similar to Triacanthinella principalis Bychowsky & Nagibina, 1968 in having morphologically similar types of haptoral sclerites and copulatory organ, but differs in possessing a longer copulatory tube. Also re-described are T. principalis Bychowsky & Nagibina, 1968, T. gracilis Bychowsky & Nagibina, 1968 and T. aspera Bychowsky & Nagibina, 1968 from both Triacanthus biaculeatus and Tripodichthys blochii, plus Triacanthinella longipenis Bychowsky & Nagibina, 1968 from Tripodichthys blochii and Triacanthinella tripathii Bychowsky & Nagibina, 1968 based on its type-material. In the new species, the filament loop of the anchors is associated with a sheath-like sclerite which envelops the anchor point. Such sclerites were also observed in the present specimens of Triacanthinella principalis, T. aspera, T. longipenis and T. gracilis but were not mentioned in the original descriptions. The generic diagnosis of Triacanthinella is amended and a key to the recognised species is presented. The specific names of two of the previously described species are emended from the neuter form to T. principalis and T. gracilis.
    Matched MeSH terms: Fish Diseases/parasitology
  18. Beveridge I
    Syst Parasitol, 2008 Feb;69(2):75-88.
    PMID: 18038196
    Tetrarhynchobothrium tenuicolle Diesing, 1850 is redescribed from the type-specimens collected from Raja clavata Linnaeus in the Adriatic Sea. T. striatum (Wagener, 1854) is redescribed from voucher specimens from the type host, Myliobatis aquila Linnaeus, from the type-locality, off Naples, Italy. The two species are very similar in tentacular armature, but are provisionally maintained as independent species, since the armature of T. tenuicolle cannot be fully described and because all available specimens of T. striatum are immature, limiting comparisons of potential differences in segment anatomy. T. setiense Dollfus, 1969 is treated as a synonym of T. striatum. Zygorhynchus borneensis n. sp. is described from Himantura uarnacoides (Bleeker) and H. pastinacoides (Bleeker) off Sabah, Malaysia. The new species is distinguished from its congeners by the very small hooks present in the basal region and by the presence of a uterine pore. The metabasal tentacular armature of Didymorhynchus southwelli Beveridge & Campbell, 1988, described for the first time, is homeoacanthous and homeomorphous in form. However, it has a basal swelling with hook rows originating on the bothrial surface and terminating on the antibothrial surface of the tentacle.
    Matched MeSH terms: Fish Diseases/parasitology
  19. Jensen K, Caira JN
    Folia Parasitol., 2006 Sep;53(3):189-207.
    PMID: 17120499
    As part of a metazoan parasite survey of elasmobranchs from Malaysian Borneo, specimens of Rhoptrobothrium Shipley et Hornell, 1906 were collected from the eagle rays Aetomylaeus maculatus (Gray) and Aetomylaeus niehofii (Bloch et Schneider). The type species is redescribed from its type host, and a neotype specimen is designated. In addition, three new species of Rhoptrobothrium are described: R. chongi sp. n., R. gambangi sp. n. and R. limae sp. n. Rhoptrobothrium myliobatidis conspicuously differs from the three new species in its lack of a secondary areola; R. limae is distinguished from R. chongi and R. gambangi based on its greater total length; R. chongi possesses conspicuously stalked remi, while R. gambangi possesses short remi, often folded anteriorly. Rhoptrobothrium is somewhat unusual among tetraphyllideans in its possession of a "metascolex," a character it shares with other taxa in the Thysanocephalinae (i.e., Myzocephalus Shipley et Hornell, 1906, Myzophyllobothrium Shipley et Hornell, 1906 and Thysanocephalum Linton, 1889). The morphology of the "metascolex" of Rhoptrobothrium is investigated and new terminology is suggested to standardise the names given to structures constituting a metascolex. As a result, Rhoptrobothrium is considered to possess cephalic peduncle extensions, termed remi. In Rhoptrobothrium, each remus bears, at its distal end, a primary areola, and, in the case of the three new species, also a secondary areola proximal to the primary areola. Myzocephalus and Myzophyllobothrium are tentatively considered to possess remi; the configuration of the "metascolex" of Thysanocephalum, however, is not considered homologous to the condition in the other three genera currently placed in the Thysanocephalinae.
    Matched MeSH terms: Fish Diseases/parasitology
  20. Lim LH
    Syst Parasitol, 2006 May;64(1):13-25.
    PMID: 16773472
    Two new and two previously described species of diplectanid monogeneans (Heteroplectanum flabelliforme n. sp., Diplectanum sumpit n. sp., D. jaculator Mizelle & Kritsky, 1969 and D. toxotes Mizelle & Kritsky, 1969) were collected from archerfish Toxotes jaculatrix off the Island of Langkawi, Kedah and off Perak, Malaysia. The reproductive systems and squamodiscs of D. jaculator and D. toxotes are described for the first time. D. sumpit n. sp. differs from D. toxotes and D. jaculator in a having a small curved copulatory tube with a distinct accessory piece, compared to the long, tubular copulatory tube of D. jaculator and the slender tube of D. toxotes. D. sumpit n. sp. also differs from D. toxotes in having a larger ventral bar and larger squamodiscs. H. flabelliforme n. sp. differs from all known Heteroplectanum species in the shape and size of the squamodiscs, the arrangement of the sclerites in the squamodiscs, the extremely large ventral bar and the short, curved, non-spinous copulatory tube.
    Matched MeSH terms: Fish Diseases/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links