Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Zakaryan H, Arabyan E, Oo A, Zandi K
    Arch Virol, 2017 Sep;162(9):2539-2551.
    PMID: 28547385 DOI: 10.1007/s00705-017-3417-y
    Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
    Matched MeSH terms: Flavonoids/metabolism
  2. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik Z, et al.
    Sci Rep, 2014 Jun 26;4:5452.
    PMID: 24965553 DOI: 10.1038/srep05452
    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted.
    Matched MeSH terms: Flavonoids/metabolism
  3. Md Nasir NL, Kamsani NE, Mohtarrudin N, Othman F, Md Tohid SF, Zakaria ZA
    Pharm Biol, 2017 Dec;55(1):2102-2109.
    PMID: 28872373 DOI: 10.1080/13880209.2017.1371769
    CONTEXT: Leaves of Muntingia calabura (Elaeocarpaceae) are widely used in traditional medical practice; scientific findings show various pharmacological activities. However, its anticancer effect has not been investigated thoroughly yet.

    OBJECTIVE: The objective of this study is to study the chemoprevention effects of MEMCL against azoxymethane (AOM)-induced colon cancer and to examine the involvement of endogenous antioxidants Materials and methods: Male Sprague-Dawley rats, divided into five groups (n = 7), were injected intraperitoneally once weekly for 2 weeks with 15 mg/kg AOM, except for the normal group (received saline). The animals were then administered orally for 8 weeks with 8% Tween-80 (vehicle; normal group), 8% Tween-80 (vehicle; cancer group) or, 50, 250 or 500 mg/kg MEMC. After treatments, colon samples were collected from each rat for the histopathological analysis, quantification of aberrant crypt foci formed and determination of colon antioxidant levels. MEMC was also subjected to HPLC analysis.

    RESULTS: The extract exerted significant (p 

    Matched MeSH terms: Flavonoids/metabolism*
  4. Jailani F, Williamson G
    Food Funct, 2014 Apr;5(4):653-62.
    PMID: 24525490 DOI: 10.1039/c3fo60691k
    Solubility and matrix play an important role in the gut lumen in delivering bioactive compounds to the absorptive surface of enterocytes. The purpose of this study was to determine the effect of certain commonly consumed lipids, soybean, olive and corn oil, on the transport and conjugation of flavonols (myricetin, quercetin, kaempferol and galangin) using the conjugation-competent co-cultured Caco-2/HT29-MTX intestinal cell monolayer model. To enable identification and quantification of conjugates, each flavonol was enzymatically glucuronidated or sulphated, then analysed by HPLC with triple quadrupole mass spectrometric detection. Quantification showed large differences in mass spectrometric peak area response factors between the aglycones and many of the conjugates, with galangin-sulphate for example ionising ∼15-fold better than galangin. Flavonol aglycones and conjugates were transported to the basolateral side of Caco-2/HT29-MTX co-cultures. The total amount of methyl, sulphate and glucuronide conjugates was in the order: galangin > quercetin > kaempferol > myricetin. All oils inhibited the transport and conjugation of galangin, the most hydrophobic flavonol, whereas they increased the sulphation, and to some extent glucuronidation, of quercetin and kaempferol. The results show that the lipid matrix has the potential to modify both transport and conjugation of dietary flavonols, but that the effect depends upon the structure and hydrophobicity.
    Matched MeSH terms: Flavonoids/metabolism*
  5. Zhu W, Zhong Z, Liu S, Yang B, Komatsu S, Ge Z, et al.
    Int J Mol Sci, 2019 Jan 16;20(2).
    PMID: 30654535 DOI: 10.3390/ijms20020365
    Morus alba is an important medicinal plant that is used to treat human diseases. The leaf, branch, and root of Morus can be applied as antidiabetic, antioxidant, and anti-inflammatory medicines, respectively. To explore the molecular mechanisms underlying the various pharmacological functions within different parts of Morus, organ-specific proteomics were performed. Protein profiles of the Morus leaf, branch, and root were determined using a gel-free/label-free proteomic technique. In the Morus leaf, branch, and root, a total of 492, 414, and 355 proteins were identified, respectively, including 84 common proteins. In leaf, the main function was related to protein degradation, photosynthesis, and redox ascorbate/glutathione metabolism. In branch, the main function was related to protein synthesis/degradation, stress, and redox ascorbate/glutathione metabolism. In root, the main function was related to protein synthesis/degradation, stress, and cell wall. Additionally, organ-specific metabolites and antioxidant activities were analyzed. These results revealed that flavonoids were highly accumulated in Morus root compared with the branch and leaf. Accordingly, two root-specific proteins named chalcone flavanone isomerase and flavonoid 3,5-hydroxylase were accumulated in the flavonoid pathway. Consistent with this finding, the content of the total flavonoids was higher in root compared to those detected in branch and leaf. These results suggest that the flavonoids in Morus root might be responsible for its biological activity and the root is the main part for flavonoid biosynthesis in Morus.
    Matched MeSH terms: Flavonoids/metabolism
  6. Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, et al.
    Eur J Pharmacol, 2010 Nov 25;647(1-3):103-9.
    PMID: 20826146 DOI: 10.1016/j.ejphar.2010.08.030
    The present study examined the potential antinociceptive activity of flavokawin B (6'-hydroxy-2',4'-dimethoxychalcone), a synthetic chalcone using chemical- and thermal-induced nociception models in mice. It was demonstrated that flavokawin B (FKB; 0.3, 1, 3 and 10 mg/kg) administered via both oral (p.o.) and intraperitoneal (i.p.) routes produced significant and dose-dependent inhibition in the abdominal constrictions induced by acetic acid, with the i.p. route producing antinociception of approximately 7-fold more potent than the p.o. route. It was also demonstrated that FKB produced significant inhibition in the two phases of the formalin-induced paw licking test. In addition, the same treatment of flavokawin B (FKB) exhibited significant inhibition of the neurogenic nociceptive induced by intraplantar injections of glutamate and capsaicin. Likewise, this compound also induced a significant increase in the response latency period to thermal stimuli in the hot plate test and its antinociceptive effect was not related to muscle relaxant or sedative action. Moreover, the antinociception effect of the FKB in the formalin-induced paw licking test and the hot plate test was not affected by pretreatment of non-selective opioid receptor antagonist, naloxone. The present results indicate that FKB produced pronounced antinociception effect against both chemical and thermal models of pain in mice that exhibited both peripheral and central analgesic activity.
    Matched MeSH terms: Flavonoids/metabolism
  7. Batumalaie K, Qvist R, Yusof KM, Ismail IS, Sekaran SD
    Clin Exp Med, 2014 May;14(2):185-95.
    PMID: 23584372 DOI: 10.1007/s10238-013-0236-7
    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.
    Matched MeSH terms: Flavonoids/metabolism*
  8. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Flavonoids/metabolism
  9. Shah FLA, Baharum SN, Goh HH, Leow TC, Ramzi AB, Oslan SN, et al.
    Mol Biol Rep, 2023 Jun;50(6):5283-5294.
    PMID: 37148413 DOI: 10.1007/s11033-023-08417-1
    BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones.

    METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified.

    CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.

    Matched MeSH terms: Flavonoids/metabolism
  10. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Flavonoids/metabolism*
  11. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Int J Mol Sci, 2010 Nov 15;11(11):4539-55.
    PMID: 21151455 DOI: 10.3390/ijms11114539
    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m(-2)s(-1). High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m(-2)s(-1). The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO(2) m(-2)s(-1) in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m(-2)s(-1). Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m(-2)s(-1) with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m(-2)s(-1) with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m(-2)s(-1). Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.
    Matched MeSH terms: Flavonoids/metabolism*
  12. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Int J Mol Sci, 2011;12(8):5238-54.
    PMID: 21954355 DOI: 10.3390/ijms12085238
    A split plot 3 by 4 experiment was designed to examine the impact of 15-week variable levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) on the characteristics of total flavonoids (TF), total phenolics (TP), total non structurable carbohydrate (TNC), net assimilation rate, leaf chlorophyll content, carbon to nitrogen ratio (C/N), phenyl alanine lyase activity (PAL) and protein content, and their relationships, in three varieties of Labisia pumila Blume (alata, pumila and lanceolata). The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effect observed. As nitrogen levels increased from 0 to 270 kg N/ha, the production of TNC was found to decrease steadily. Production of TF and TP reached their peaks under 0 followed by 90, 180 and 270 kg N/ha treatment. However, net assimilation rate was enhanced as nitrogen fertilization increased from 0 to 270 kg N/ha. The increase in production of TP and TF under low nitrogen levels (0 and 90 kg N/ha) was found to be correlated with enhanced PAL activity. The enhancement in PAL activity was followed by reduction in production of soluble protein under low nitrogen fertilization indicating more availability of amino acid phenyl alanine (phe) under low nitrogen content that stimulate the production of carbon based secondary metabolites (CBSM). The latter was manifested by high C/N ratio in L. pumila plants.
    Matched MeSH terms: Flavonoids/metabolism
  13. Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Aziz MA, Philip E
    Molecules, 2011 Jun 17;16(6):4994-5007.
    PMID: 21694666 DOI: 10.3390/molecules16064994
    In the present study, two accessions of Centella asiatica (CA03 and CA23) were subjected to gamma radiation to examine the response of these accessions in terms of survival rate, flavonoid contents, leaf gas exchange and leaf mass. Radiation Sensitivity Tests revealed that based on the survival rate, the LD(50) (gamma doses that killed 50% of the plantlets) of the plantlets were achieved at 60 Gy for CA03 and 40 Gy for CA23. The nodal segments were irradiated with gamma rays at does of 30 and 40 Gy for Centella asiatica accession 'CA03' and 20 and 30 Gy for accession 'CA23. The nodal segment response to the radiation was evaluated by recording the flavonoid content, leaf gas exchange and leaf biomass. The experiment was designed as RCBD with five replications. Results demonstrated that the irradiated plantlets exhibited greater total flavonoid contents (in eight weeks) significantly than the control where the control also exhibited the highest total flavonoid contents in the sixth week of growth; 2.64 ± 0.02 mg/g DW in CA03 and 8.94 ± 0.04 mg/g DW in CA23. The total flavonoid content was found to be highest after eight weeks of growth, and this, accordingly, stands as the best time for leaf harvest. Biochemical differentiation based on total flavonoid content revealed that irradiated plantlets in CA23 at 20 and 30 Gy after eight weeks contained the highest total flavonoid concentrations (16.827 ± 0.02; 16.837 ± 0.008 mg/g DW, respectively) whereas in CA03 exposed to 30 and 40 Gy was found to have the lowest total flavonid content (5.83 ± 0.11; 5.75 ± 0.03 mg/g DW). Based on the results gathered in this study, significant differences were found between irradiated accessions and control ones in relation to the leaf gas. The highest PN and gs were detected in CA23 as control followed by CA23 irradiated to 20Gy (CA23G20) and CA23G30 and the lowest PN and gs were observed in CA03 irradiated to 40Gy (CA03G40). Moreover, there were no significant differences in terms of PN and gs among the irradiated plants in each accession. The WUE of both irradiated accessions of Centella asiatica were reduced as compared with the control plants (p < 0.01) while Ci and E were enhanced. There were no significant differences in the gas exchange parameters among radiated plants in each accession. Moreover, malondialdehyde (MDA) of accessions after gamma treatments were significantly higher than the control, however, flavonoids which were higher concentration in irradiated plants can scavenge surplus free radicals. Therefore, the findings of this study have proven an efficient method of in vitro mutagenesis through gamma radiation based on the pharmaceutical demand to create economically superior mutants of C. asiatica. In other words, the results of this study suggest that gamma irradiation on C. asiatica can produce mutants of agricultural and economical importance.
    Matched MeSH terms: Flavonoids/metabolism*
  14. Moghaddam SS, Jaafar HB, Aziz MA, Ibrahim R, Rahmat AB, Philip E
    Molecules, 2011 Oct 25;16(11):8930-44.
    PMID: 22027950 DOI: 10.3390/molecules16118930
    The study was couducted to investigate the effects of gamma irradiation and CO₂ on flavonoid content and leaf gas exchange in C.asiatica. For flavonoid determination, the design was a split split plot based on Randomized Complete Block Design (RCBD). For other parameters, the designs were split plots. Statistical tests revealed significant differences in flavonoid contents of Centella asiatica leaves between different growth stages and various CO₂ treatments. CO₂ 400, G20 (400 = ambient CO₂; G20 = Plants exposed to 20 Gy) showed 82.90% higher total flavonoid content (TFC) in the 5th week than CO₂ 400 as control at its best harvest time (4th week). Increasing the concentration of CO₂ from 400 to 800 μmol/mol had significant effects on TFC and harvesting time. In fact, 800 μmol/mol resulted in 171.1% and 66.62% increases in TFC for control and irradiated plants, respectively. Moreover, increasing CO₂ concentration reduced the harvesting time to three and four weeks for control and irradiated plants, respectively. Enhancing CO₂ to 800 µmol/mol resulted in a 193.30% (CO₂ 800) increase in leaf biomass compared to 400 µmol/mol and 226.34% enhancement in irradiated plants (CO₂ 800, G20) [800 = Ambient CO₂; G20 = Plants exposed to 20 Gy] than CO₂ 400, G20. In addition, the CO₂ 800, G20 had the highest amount of flavonoid*biomass in the 4th week. The results of this study indicated that all elevated CO₂ treatments had higher PN than the ambient ones. The findings showed that when CO₂ level increased from 400 to 800 µmol/mol, stomatal conductance, leaf intercellular CO₂ and transpiration rate had the tendency to decrease. However, water use efficiency increased in response to elevated CO₂ concentration. Returning to the findings of this study, it is now possible to state that the proposed method (combined CO₂ and gamma irradiation) has the potential to increase the product value by reducing the time to harvest, increasing the yield per unit area via boosting photosynthesis capacity, as well as increasing biochemicals (flavonoids) per gram DM.
    Matched MeSH terms: Flavonoids/metabolism*
  15. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Xenobiotica, 2010 Jul;40(7):458-66.
    PMID: 20402563 DOI: 10.3109/00498251003786749
    1. The effect of flavonoids on coumarin 7-hydroxylation, an activity marker of an important human liver cytochrome P450 isoform, cytochrome P450 2A6 (CYP2A6), was investigated in this study. 2. Coumarin 7-hydroxylase activity was measured fluorometrically in reaction mixtures containing cDNA-expressed CYP2A6, nicotinamide adenine dinucleotide phosphate generating system and 10 uM coumarin, at various concentrations of flavonoids. 3. Among the 23 compounds tested, most of the active members were from flavonol group of hydroxylated flavonoids, with myricetin being the most potent inhibitor followed by quercetin, galangin, and kaempferol. 4. Further exploration of the inhibition mechanism of these compounds revealed that myricetin, galangin, and kaempferol exhibited mixed-type of inhibition pattern while quercetin was observed to exhibit competitive mode of inhibition. 5. Structure-function analyses revealed that degree of inhibition was closely related to the number and location of hydroxyl groups, glycosylation of the free hydroxyl groups, degree of saturation of the flavane nucleus as well as the presence of the alkoxylated function.
    Matched MeSH terms: Flavonoids/metabolism*
  16. Jaafar HZ, Ibrahim MH, Mohamad Fakri NF
    Molecules, 2012 Jun 13;17(6):7305-22.
    PMID: 22695235 DOI: 10.3390/molecules17067305
    A randomized complete block design 2 × 4 experiment was designed and conducted for 15 weeks to characterize the relationships between production of total phenolics, flavonoid, anthocyanin, leaf gas exchange, total chlorophyll, phenylalanine ammonia-lyase (PAL) and malondialdehyde (MDA) activity in two varieties of Labisia pumila Benth, namely the var. alata and pumila, under four levels of evapotranspiration replacement (ER) (100%; well watered), (75%, moderate water stress), (50%; high water stress) and (25%; severe water stress). The production of total phenolics, flavonoids, anthocyanin, soluble sugar and relative leaf water content was affected by the interaction between varieties and SWC. As the ER levels decreased from 100% to 25%, the production of PAL and MDA activity increased steadily. At the highest (100%) ER L. pumila exhibited significantly higher net photosynthesis, apparent quantum yield, maximum efficiency of photosystem II (f(v)/f(m)) and lower dark respiration rates compared to the other treatment. The production of total phenolics, flavonoids and anthocyanin was also found to be higher under high water stress (50% ER replacement) compared to severe water stress (25% ER). From this study, it was observed that as net photosynthesis, apparent quantum yield and chlorophyll content were downregulated under high water stress the production of total phenolics, flavonoids and anthocyanin were upregulated implying that the imposition of high water stress can enhance the medicinal properties of L. pumila Benth.
    Matched MeSH terms: Flavonoids/metabolism
  17. Ling SK, Pisar MM, Man S
    Biol Pharm Bull, 2007 Jun;30(6):1150-2.
    PMID: 17541171
    The leaf, stem and root extracts of Chromolaena odorata were evaluated for their effect on platelet-activating factor (PAF) receptor binding on rabbit platelets using 3H-PAF as a ligand. The leaf extract demonstrated high PAF receptor binding inhibitory activity of 79.2+/-2.1% at 18.2 microg/ml. A total of eleven flavonoids were subsequently isolated from the active leaf extract and evaluated for their effects on PAF receptor binding. Eight of the flavonoids exhibited >50% inhibition on the binding activity at 18.2 microg/ml. These flavonoids were identified as eriodictyol 7,4'-dimethyl ether, quercetin 7,4'-methyl ether, naringenin 4'-methyl ether, kaempferol 4'-methyl ether, kaempferol 3-O-rutinoside, taxifolin 4'-methyl ether, taxifolin 7-methyl ether and quercetin 4'-methyl ether. Their IC50 values ranged from 19.5 to 62.1 microM.
    Matched MeSH terms: Flavonoids/metabolism*
  18. Jaafar HZ, Ibrahim MH, Karimi E
    Molecules, 2012 May 25;17(6):6331-47.
    PMID: 22634843 DOI: 10.3390/molecules17066331
    A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO₂ (400, 800 and 1,200 μmol·mol⁻¹) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO₂ concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO₂ levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO₂ (1,200 μmol·mol⁻¹) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO₂ conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g⁻¹ DW) and pumila (25 μg·g⁻¹ DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO₂ enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO₂ levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO₂ enrichment conditions.
    Matched MeSH terms: Flavonoids/metabolism*
  19. Ismail NA, Jusoh SA
    Interdiscip Sci, 2017 Dec;9(4):499-511.
    PMID: 26969331 DOI: 10.1007/s12539-016-0157-8
    Dengue infections are currently estimated to be 390 million cases annually. Yet, there is no vaccine or specific therapy available. Envelope glycoprotein E (E protein) of DENV mediates viral attachment and entry into the host cells. Several flavonoids have been shown to inhibit HIV-1 and hepatitis C virus entry during the virus-host membrane fusion. In this work, molecular docking method was employed to predict the binding of nine flavonoids (baicalin, baicalein, EGCG, fisetin, glabranine, hyperoside, ladanein, quercetin and flavone) to the soluble ectodomain of DENV type 2 (DENV2) E protein. Interestingly, eight flavonoids were found to dock into the same binding pocket located between the domain I and domain II of different subunits of E protein. Consistent docking results were observed not only for the E protein structures of the DENV2-Thai and DENV2-Malaysia (a homology model) but also for the E protein structures of tick-borne encephalitis virus and Japanese encephalitis virus. In addition, molecular dynamics simulations were performed to further evaluate the interaction profile of the docked E protein-flavonoid complexes. Ile4, Gly5, Asp98, Gly100 and Val151 residues of the DENV2-My E protein that aligned to the same residues in the DENV2-Thai E protein form consistent hydrogen bond interactions with baicalein, quercetin and EGCG during the simulations. This study demonstrates flavonoids potentially form interactions with the E protein of DENV2.
    Matched MeSH terms: Flavonoids/metabolism
  20. Ibrahim MH, Jaafar HZ
    Int J Mol Sci, 2012;13(5):5290-306.
    PMID: 22754297 DOI: 10.3390/ijms13055290
    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.
    Matched MeSH terms: Flavonoids/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links