Displaying all 2 publications

  1. Saad B, Wai WT, Ali AS, Saleh MI
    Anal Sci, 2006 Jan;22(1):45-50.
    PMID: 16429771
    A flow injection analysis (FIA) method for the determination of four residual chlorine species, namely combined available chlorine (CAC), free available chlorine (FAC), total available chlorine (TAC) and chlorite (ClO2-) was developed using a flow-through triiodide-selective electrode as a detector. An important strategy of speciation studies utilized the kinetic discrimination of reactions between the CAC and FAC with Fe2+, which was applied to the speciation of FAC, CAC and TAC. The speciation of available chlorine species and chlorite (an oxychlorine species) was achieved by using the same set-up, but using flow streams of different pH. The effects of the pH of the carrier stream, the flow rate and the sample volume were studied. The method exhibited linearity from 2.8 x 10(-6) to 2.8 x 10(-4) M active chlorine (expressed as OCl-) with a detection limit of 1.4 x 10(-6) M. The selectivity of the method was studied by examining the minimum pH for the oxidation of iodide by other oxidants, and also by assessing the potentiometric selectivity coefficients. The proposed method was successfully applied to the determination of chlorine species in tap water, and disinfecting formulations where good agreement occurred between the proposed and standard methods were found.
    Matched MeSH terms: Flow Injection Analysis/instrumentation
  2. Che Harun FK, Covington JA, Gardner JW
    IET Nanobiotechnol, 2012 Jun;6(2):45-51.
    PMID: 22559706 DOI: 10.1049/iet-nbt.2010.0032
    In this study the authors report on the development of a new type of electronic nose (e-nose) instrument, which the authors refer to as the Portable electronic Mucosa (PeM) as a continuation of previous research. It is designed to mimic the human nose by taking significant biological features and replicating them electronically. The term electronic mucosa or simply e-mucosa was used because our e-nose emulates the nasal chromatographic effect discovered in the olfactory epithelium, located within the upper turbinate. The e-mucosa generates spatio-temporal information that the authors believe could lead to improved odour discrimination. The PeM comprises three large sensor arrays each containing a total of 576 sensors, with 24 different coatings, to increase the odour selectivity. The nasal chromatographic effect provides temporal information in the human olfactory system, and is mimicked here using two-coated retentive channels. These channels are coated with polar and non-polar compounds to enhance the selectivity of the instrument. Thus, for an unknown sample, the authors have both the spatial information (as with a traditional e-nose) and the temporal information. The authors believe that this PeM may offer a way forward in developing a new range of low-cost e-noses with superior odour specificity.
    Matched MeSH terms: Flow Injection Analysis/instrumentation*
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links