Displaying publications 1 - 20 of 180 in total

Abstract:
Sort:
  1. Zhu W, Zheng W, Hu X, Xu X, Zhang L, Tian J
    Biochim Biophys Acta Proteins Proteom, 2017 Apr;1865(4):404-413.
    PMID: 28087425 DOI: 10.1016/j.bbapap.2017.01.004
    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.
    Matched MeSH terms: Flowers/metabolism*
  2. Zengin G, Mahomoodally MF, Sinan KI, Picot-Allain MCN, Yildiztugay E, Cziáky Z, et al.
    Food Res Int, 2020 07;133:109129.
    PMID: 32466933 DOI: 10.1016/j.foodres.2020.109129
    The Crocus and Cyclamen genus have been reported to possess diverse biological properties. In the present investigation, two geophytes from these genus, namely Crocus pallasi and Cyclamen cilicium have been studied. The in vitro antioxidant, enzyme inhibitory, and cytotoxic effects of the methanol extracts of Crocus pallasii and Cyclamen cilicium aerial and underground parts were investigated. Antioxidant abilities of the extracts were investigated via different antioxidant assays (metal chelating, radical quenching (ABTS and DPPH), reducing power (CUPRAC and FRAP) and phosphomolybdenum). Cholinesterases, amylase, tyrosinase, and glucosidase were used as target enzymes for detecting enzyme inhibitory abilities of the samples. Regarding the cytotoxic abilities, breast cancer cell lines (MDA-MB 231 and MCF-7) and prostate cancer cell lines (DU-145) were used. The flowers extracts of Crocus pallasii and C. cilicium possessed the highest flavonoid content. The highest phenolic content was recorded from C. cilicium root extract (47.62 mg gallic acid equivalent/g extract). Cyclamen cilicium root extract showed significantly (p 
    Matched MeSH terms: Flowers/chemistry
  3. Zakaria A, Shakaff AY, Masnan MJ, Ahmad MN, Adom AH, Jaafar MN, et al.
    Sensors (Basel), 2011;11(8):7799-822.
    PMID: 22164046 DOI: 10.3390/s110807799
    The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
    Matched MeSH terms: Flowers
  4. Zahra MH, Salem TAR, El-Aarag B, Yosri N, El-Ghlban S, Zaki K, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288458 DOI: 10.3390/molecules24132495
    BACKGROUND/AIM: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers.

    METHODS: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model.

    RESULTS: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively.

    CONCLUSION: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.

    Matched MeSH terms: Flowers/chemistry
  5. Zafirah Z, Azidah A
    Sains Malaysiana, 2018;47:433-439.
    Thrips (Thysanoptera) are common pests on legume plants, yet little is known about their ecology or diversity in Peninsular
    Malaysia. In legumes, thrips are typically found in flowers, where their feeding activity causes malformations that
    eventually lead to crop damage. In this study, we examined the diversity of thrips species, particularly Megalurothrips
    usitatus, in three selected legume farms around Peninsular Malaysia (Janda Baik, Pahang; Bestari Jaya, Selangor; and
    Jelebu, Negeri Sembilan). Each month from April 2013 to May 2014, depending on growing season, legume flowers were
    inspected for thrips in five random plots from each farm. Sampling was performed six times in Bestari Jaya and Jelebu
    and twelve times in Janda Baik. The most abundant thrips species on legumes was M. usitatus (89.97%) followed by
    Thrips parvispinus (9.77%), T. hawaiiensis (0.13%) and Ceratothripoides brunneus (0.12%). The abundance of M. usitatus
    was not different between long bean, French bean and winged bean which equally distributed among different arbitrary
    strata on legume plants. Temperature and light intensity were found to be positively correlated with the abundance of
    M. usitatus, but relative humidity showed a negative relationship. M. usitatus was found in large numbers during hot
    and dry months, but in lower numbers during raining season. This study suggested that wet season may help to regulate
    the populations of M. usitatus on legume plants.
    Matched MeSH terms: Flowers
  6. Yunoh SM
    PhytoKeys, 2021;174:127-146.
    PMID: 33776527 DOI: 10.3897/phytokeys.174.62023
    Chroesthes is a small genus that includes three species from Peninsular Malaysia: Chroesthes faizaltahiriana Siti-Munirah sp. nov., C. lanceolata (T. Anderson) B.Hansen and C. longifolia (Wight) B.Hansen. Chroesthes faizaltahiriana, recently discovered in the State of Kelantan, is described and illustrated. This species is similar to the common species C. longifolia, but is distinguished mainly by its inflorescence type, calyx shape and its flowers being bright orange instead of dark purple internally. Chroesthes lanceolata is a new record for Peninsular Malaysia and has only been collected once. Following the IUCN Red List Categories and Criteria, these three species are assessed (national scale assessment) as Critically Endangered (C. faizaltahiriana and C. lanceolata) and Least Concern (C. longifolia).
    Matched MeSH terms: Flowers
  7. Yumoto T
    Am J Bot, 2000 Aug;87(8):1181-8.
    PMID: 10948003
    Pollination ecology of three Durio species, D. grandiflorus, D. oblongus, and D. kutejensis (Bombacaceae), was studied in a lowland dipterocarp forest in Sarawak, Malaysia, during a peak flowering period when at least 305 species of plants bloomed in 1996. Durio has been reported to be pollinated by bats in Peninsular Malaysia. However, my observations of flower visitors and pollination experiments indicated that two species, D. grandiflorus and D. oblongus, were pollinated by spiderhunters (Nectariniidae) and that the other species, D. kutejensis, was pollinated by giant honey bees and bats as well as birds. Hand-pollination experiments showed that all three species were obligate outbreeders. A resource limitation in fruit production was suggested. The former two species were visited only by spiderhunters, and the bagged flowers that were opened for animal visitors only at night bore no fruit, while those that were opened only during the day bore fruits, at comparable fruiting ratios to open pollination. Durio kutejensis was observed to be visited by giant honey bees, birds, and bats at different times of day, and three series of bagged experiments that exposed the flowers to animal visitors at different times of day bore fruits at a comparable ratio to open-pollination.
    Matched MeSH terms: Flowers
  8. Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, Basherudin N, et al.
    Mol Ecol, 2017 Oct;26(19):5074-5085.
    PMID: 28749031 DOI: 10.1111/mec.14257
    Elucidating the physiological mechanisms of the irregular yet concerted flowering rhythm of mass flowering tree species in the tropics requires long-term monitoring of flowering phenology, exogenous and endogenous environmental factors, as well as identifying interactions and dependencies among these factors. To investigate the proximate factors for floral initiation of mast seeding trees in the tropics, we monitored the expression dynamics of two key flowering genes, meteorological conditions and endogenous resources over two flowering events of Shorea curtisii and Shorea leprosula in the Malay Peninsula. Comparisons of expression dynamics of genes studied indicated functional conservation of FLOWERING LOCUS T (FT) and LEAFY (LFY) in Shorea. The genes were highly expressed at least 1 month before anthesis for both species. A mathematical model considering the synergistic effect of cool temperature and drought on activation of the flowering gene was successful in predicting the observed gene expression patterns. Requirement of both cool temperature and drought for floral transition suggested by the model implies that flowering phenologies of these species are sensitive to climate change. Our molecular phenology approach in the tropics sheds light on the conserved role of flowering genes in plants inhabiting different climate zones and can be widely applied to dissect the flowering processes in other plant species.
    Matched MeSH terms: Flowers/genetics; Flowers/physiology*
  9. Yeang HY
    Bioessays, 2009 Nov;31(11):1211-8.
    PMID: 19795408 DOI: 10.1002/bies.200900078
    The plant maintains a 24-h circadian cycle that controls the sequential activation of many physiological and developmental functions. There is empirical evidence suggesting that two types of circadian rhythms exist. Some plant rhythms appear to be set by the light transition at dawn, and are calibrated to circadian (zeitgeber) time, which is measured from sunrise. Other rhythms are set by both dawn and dusk, and are calibrated to solar time that is measured from mid-day. Rhythms on circadian timing shift seasonally in tandem with the timing of dawn that occurs earlier in summer and later in winter. On the other hand, rhythms set to solar time are maintained independently of the season, the timing of noon being constant year-round. Various rhythms that run in-phase and out-of-phase with one another seasonally may provide a means to time and induce seasonal events such as flowering.
    Matched MeSH terms: Flowers*
  10. Yeang HY
    Yale J Biol Med, 2019 06;92(2):213-223.
    PMID: 31249482
    The widely held explanation for photoperiod-controlled flowering in long-day plants is largely embodied in the External Coincidence Hypothesis which posits that flowering is induced when activity of a rhythmic gene that regulates it (a putative "flowering gene") occurs in the presence of light. Nevertheless, re-examination of the Arabidopsis flowering data from non 24-hour cycles of Roden et al. suggests that External Coincidence is not tenable if the circadian rhythm of the "flowering gene" were entrained to sunrise as commonly accepted. On the other hand, the hypothesis is supported if circadian cycling of the gene conforms to a solar rhythm, and its entrainment is to midnight on the solar clock. Data available point to flowering being induced by the gene which peaks in its expression between 16 to 19 h after midnight. In the normal 24 h cycle, that would be between 4 p.m. and 7 p.m., regardless of the photoperiod. Such timing of the "flowering gene" expression allows for variable coincidence between gene activity and light, depending on the photoperiod and cycle period. A correlation is found between earliness of flowering and the degree of coincidence of "flowering gene" expression with light (r = 0.88, p<0.01).
    Matched MeSH terms: Flowers/genetics*
  11. Yeang HY
    New Phytol, 2007;175(2):283-9.
    PMID: 17587376
    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
    Matched MeSH terms: Flowers/physiology*; Flowers/radiation effects*
  12. Yeang HY
    New Phytol, 2007;176(4):730-5.
    PMID: 17997756
    Matched MeSH terms: Flowers/physiology*; Flowers/radiation effects*
  13. Yeang HY
    J Exp Bot, 2013 Jul;64(10):2643-52.
    PMID: 23645867 DOI: 10.1093/jxb/ert130
    In photoperiodic flowering, long-day (LD) plants are induced to flower seasonally when the daylight hours are long, whereas flowering in short-day (SD) plants is promoted under short photoperiods. According to the widely accepted external coincidence model, flowering occurs in LD Arabidopsis when the circadian rhythm of the gene CONSTANS (CO) peaks in the afternoon, when it is light during long days but dark when the days are short. Nevertheless, extending this explanation to SD flowering in rice, Oriza sativa, requires LD and SD plants to have 'opposite light requirements' as the CO orthologue in rice, HEADING-DATE1 (Hd1), promotes flowering only under short photoperiods. This report proposes a role of the plant's solar rhythm in promoting seasonal flowering. The interaction between rhythmic genes entrained to the solar clock and those entrained to the circadian clock form the basis of an internal coincidence model that explains both LD and SD flowering equally well. The model invokes no presumption of opposite light requirements between LD and SD plants, and further argues against any specific requirement of either light or darkness for SD flowering. Internal coincidence predicts the inhibition of SD flowering of the rice plant by a night break (a brief interruption of light), while it also provides a plausible explanation for how a judiciously timed night break promotes Arabidopsis flowering even on short days. It is the timing of the light transitions (sunrise and sunset) rather than the duration of light or darkness per se that regulates photoperiod-controlled flowering.
    Matched MeSH terms: Flowers/genetics; Flowers/growth & development*; Flowers/metabolism; Flowers/radiation effects
  14. Yan, S.W., Asmah, R.
    MyJurnal
    Synthetic antioxidants are added to food in the powdered form to preserve it. However these compounds posed serious health concern since they have been associated with causing cancer. Thus using fresh herbs with antioxidant activities would be good alternative. The objectives of this study were to evaluate and compare the total phenolic contents and antioxidant activities of both powdered and fresh forms of turmeric leaf, pandan leaf and torch ginger flower. Total phenolic content (TPC) was assayed based on the redox reaction between Folin-Ciocalteu with phenolics in the sample extracts. Antioxidant activity (AA) was assayed using the ß-carotene linoleate model system and the percentage of antioxidant activity was calculated from the values of degradation rate. Scavenging activity (SA) was assayed using the DPPH radical scavenging model system whereby EC50 value was determined from the plotted graph of scavenging activity against the concentration of sample extracts. Analyses revealed that powdered forms of turmeric leaf, pandan leaf and torch ginger flower had higher TPC (2013.09 ± 5.13, 1784.25 ± 7.59 and 1937.42 ± 6.61 mg GAE/100g, respectively) than their respective fresh forms (348.75 ± 1.26, 356.42 ± 1.32 and 211.59 ± 6.29 mg GAE/100g, respectively). Similarly, powdered forms of turmeric leaf, pandan leaf and torch ginger flower possessed better AA (64.31 ± 0.99, 65.09 ± 0.74 and 11.80 ± 0.40 %, respectively) than their respective fresh forms (24.93 ± 0.71, 16.91 ± 0.70 and 1.45 ± 0.10 %, respectively). Powdered forms of turmeric leaf, pandan leaf and torch ginger flower were also better radical scavenger as compared to their respective fresh forms. In conclusion, all samples in their powdered forms have high total phenolic contents, antioxidant and scavenging activities than their respective fresh forms.
    Matched MeSH terms: Flowers
  15. Yadzir ZH, Misnan R, Abdullah N, Arip M, Murad S
    PMID: 21710860
    The aim of this study was to identify the major allergens of wildflower honey in local patients with atopic disease. SDS-PAGE revealed ten protein bands of 25 to 110 kDa, with a heavy cluster in region of 40-75 kDa. Immunoblotting demonstrated seven IgE-binding bands of 39 to 110 kDa. The 60 kDa protein had the highest frequency of IgE-binding (100%) followed by 54 kDa protein (95%), thus identified as the major allergens of wildflowerhoney. Our findings indicate that the allergen extract used for diagnosis of honey allergy contains both the 54 kDa and 60 kDa proteins.
    Matched MeSH terms: Flowers/immunology
  16. Wu J, Zhang H, Wang S, Yuan L, Grünhofer P, Schreiber L, et al.
    J Plant Res, 2019 Jul;132(4):531-540.
    PMID: 31127431 DOI: 10.1007/s10265-019-01115-9
    Areca nuts (seeds of Areca catechu L.) are a traditional and popular masticatory in India, Bangladesh, Malaysia, certain parts of China, and some other countries. Four related pyridine alkaloids (arecoline, arecaidine, guvacoline, and guvacine) are considered being the main functional ingredients in areca nut. Until now, A. catechu is the only known species producing these alkaloids in the Arecaceae family. In the present study, we investigated alkaloid contents in 12 Arecaceae species and found that only Areca triandra Roxb. contained these pyridine alkaloids. We further analyzed in more detail tissue-specific and development-related distribution of these alkaloids in leaves, male and female flowers and fruits in different stages of maturity in A. triandra by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Results revealed that the alkaloids were most abundant in young leaves, the pericarp of ripe fruits and the endosperm of unripe fruits in developmental stage 2. Abundance of the 4 different alkaloids in A. triandra fruits varied during maturation. Pericarps of ripe fruits had the highest arecaidine concentration (4.45 mg g-1) and the lowest guvacoline concentration (0.0175 mg g-1), whereas the endosperm of unripe fruits of developmental stage 2 contained the highest guvacoline concentration (3.39 mg g-1) and the lowest guvacine concentration (0.245 mg g-1). We conclude that A. triandra is useful in future as a further valuable source of Areca alkaloids.
    Matched MeSH terms: Flowers/metabolism
  17. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
    Matched MeSH terms: Flowers
  18. Wong KC, Hag Ali DM, Boey PL
    Nat Prod Res, 2012;26(7):609-18.
    PMID: 21834640 DOI: 10.1080/14786419.2010.538395
    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.
    Matched MeSH terms: Flowers/chemistry
  19. Wicaksono A, Mursidawati S, Sukamto LA, Teixeira da Silva JA
    Planta, 2016 Aug;244(2):289-96.
    PMID: 27059028 DOI: 10.1007/s00425-016-2512-8
    MAIN CONCLUSION: The propagation of Rafflesia spp. is considered to be important for future development of ornamental and other applications. Thus far, the only successful propagation technique has been grafting. This mini-review succinctly emphasizes what is known about Rafflesia species. Members of the genus Rafflesia (Rafflesiaceae), which are holoparasitic plants known to grow on a host vine, Tetrastigma sp., are widely spread from the Malayan Peninsula to various islands throughout Indonesia. The plant's geographical distribution as well as many other aspects pertaining to the basic biology of this genus have still not been studied. The young flower buds and flowers of wild Rafflesia hasseltii Suringar, Rafflesia keithii Meijer and Rafflesia cantleyi Solms-Laubach are used in local (Malaysia and Indonesia) traditional ethnomedicine as wound-healing agents, but currently no formal published research exists to validate this property. To maintain a balance between its ethnomedicinal and ornamental use, and conservation, Rafflesia spp. must be artificially cultivated to prevent overexploitation. A successful method of vegetative propagation is by host grafting using Rafflesia-impregnated Tetrastigma onto the stem of a normal Tetrastigma plant. Due to difficulties with culture contamination in vitro, callus induction was only accomplished in 2010 for the first time when picloram and 2,4-D were added to a basal Murashige and Skoog medium, and the tissue culture of holoparasitic plants continues to be extremely difficult. Seeds harvested from fertile fruit may serve as a possible method to propagate Rafflesia spp. This paper provides a brief synthesis on what is known about research related to Rafflesia spp. The objective is to further stimulate researchers to examine, through rigorous scientific discovery, the mechanisms underlying the ethnomedicinal properties, the flowering mechanisms, and suitable in vitro regeneration protocols that would allow for the fortification of germplasm conservation.
    Matched MeSH terms: Flowers/growth & development
  20. Wiafe-Kwagyan M, Odamtten GT
    Trop Life Sci Res, 2018 Mar;29(1):173-194.
    PMID: 29644023 DOI: 10.21315/tlsr2018.29.1.12
    The objective of this study was to investigate the influence of spent mushroom compost of Pleurotus eous strain P-31 on the growth and yield performance of pepper and tomato seedlings under greenhouse conditions. Sandy loam soil was combined with different percentages of SMC to obtain the following combinations (0, 5, 10, 15, 20, 25 and 30) %. Lower concentrations SMC5, SMC10 and SMC15 promoted vegetative growth (plant height, leaf area, chlorophyll content, number of leaves and axillary branches) of the two test plants. Tomato seedlings grown in SMC10 recorded the highest plant height (50.3 ± 7.2cm); leaf area (378.8 ± 1.2cm2); number of floral buds (51) and flowers (28) whereas SMC5 recorded the highest chlorophyll content 34.1 ± 0.9CCI though SMC15 recorded the highest number of leaves (8). Tomato seedlings grown in SMC30 produced both the maximum number of fruits (8) with corresponding high weight (34.2 ± 7.7g). Pepper seedlings grown in lower concentrations (SMC5-15) recorded the highest plant heights (29.8-30.8cm), chlorophyll content (20.3CCI) and leaf area (53.5-66.2 cm2). Although the different combinations of sandy loam soil and SMC did not significantly (p ≥ 0.05) affect the number of axillary branches developed; different combinations significantly (p ≤ 0.05) affected the number of floral bud, flower and fruit, weight of fruits formed and value of each of these increased with increasing percentage of SMC. Pepper seedlings grown on SMC30 recorded the maximum number of floral buds (32.0 ± 3.6), number of flowers (19.4 ± 1.3), number of fruits (10.8 ± 1.2) and weight of fruits (31.9 ± 3.4g). Tomato seedlings raised on SMC100 (spent mushroom compost only) and soil only did not significantly (p ≥ 0.05) differ from each other however, was statistically significant (p ≤ 0.05) from amended sandy loam soil by all criteria investigated. The study shows that SMC provide favourable soil conditioners for the cultivation of fruits, vegetables and foliage crops as it improved growth and yield of tomato and pepper seedlings.
    Matched MeSH terms: Flowers
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links