Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Chong FC, Gwee XF
    Nat Prod Res, 2015;29(15):1485-7.
    PMID: 25836369 DOI: 10.1080/14786419.2015.1027892
    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.
    Matched MeSH terms: Flowers/chemistry*
  2. Sharifudin SA, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulselvan P
    Pharm Biol, 2013 Mar;51(3):279-88.
    PMID: 23043505 DOI: 10.3109/13880209.2012.720993
    Moringa oleifera Lam. (Moringaceae) is a rich source of essential minerals and antioxidants; it has been used in human and animal nutrition. The leaves and flowers are being used by the population with great dietary importance.
    Matched MeSH terms: Flowers/chemistry*
  3. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
    Matched MeSH terms: Flowers/chemistry
  4. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R
    Molecules, 2015 Feb 05;20(2):2693-706.
    PMID: 25665064 DOI: 10.3390/molecules20022693
    Silver nanoparticles (Ag-NPs), the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.
    Matched MeSH terms: Flowers/chemistry*
  5. Ghasemzadeh A, Jaafar HZ, Rahmat A, Ashkani S
    BMC Complement Altern Med, 2015 Sep 23;15:335.
    PMID: 26399961 DOI: 10.1186/s12906-015-0838-6
    BACKGROUND: Etlingera elatior is a well-known herb in Malaysia with various pharmaceutical properties.

    METHODS: E. elatior flowers grown in three different locations of Malaysia (Kelantan, Pahang and Johor), were investigated for differences in their content of secondary metabolites (total phenolics [TPC], total flavonoids [TFC], and total tannin content [TTC]) as well as for their antioxidant, anticancer, and antibacterial properties. Phenolic acids and flavonoids were isolated and identified using ultra-high performance liquid chromatography (UHPLC). Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used to evaluate the antioxidant activities. The anticancer activity of extracts was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.

    RESULTS: When extracted with various solvents (aqueous and ethanolic), samples from the different locations yielded significantly different results for TPC, TFC, and TTC as well as antioxidant activity. Aqueous extracts of E. elatior flowers collected from Kelantan exhibited the highest values: TPC (618.9 mg/100 g DM), TFC (354.2 mg/100 g DM), TTC (129.5 mg/100 g DM), DPPH (76.4 %), and FRAP (6.88 mM of Fe (II)/g) activity with a half-maximal inhibitory concentration (IC50) of 34.5 μg/mL compared with extracts of flowers collected from the other two locations. The most important phenolic compounds isolated in this study, based on concentration, were: gallic acid > caffeic acid > tannic acid > chlorogenic acid; and the most important flavonoids were: quercetin > apigenin > kaempferol > luteolin > myricetin. Extracts of flowers from Kelantan exhibited potent anticancer activity with a IC50of 173.1 and 196.2 μg/mL against the tumor cell lines MCF-7 and MDA-MB-231 respectively, compared with extracts from Pahang (IC50 = 204.5 and 246.2 μg/mL) and Johor samples (IC50 = 277.1 and 296.7 μg/mL). Extracts of E. elatior flowers also showed antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa with minimal inhibitory concentrations (MIC) ranging from 30 to >100 μg/mL.

    CONCLUSIONS: In general, therefore, based on the potent antioxidant and anticancer activity of flower extracts, it appears that E. elatior grown in the North-east of Malaysia (Kelantan) is a potential source of therapeutic compounds with anti-cancer activity.

    Matched MeSH terms: Flowers/chemistry
  6. Loh KE, Chin YS, Safinar Ismail I, Tan HY
    Phytochem Anal, 2022 Jan;33(1):12-22.
    PMID: 34000756 DOI: 10.1002/pca.3057
    INTRODUCTION: Hyperuricemia is the key risk factor for gout, in which the elevated uric acid is attributed to the oxidation of hypoxanthine and xanthine to uric acid by xanthine oxidase (XO). Adverse effects of the current treatments lead to an urgent need for safer and more effective alternative from natural resources.

    OBJECTIVE: To compare the metabolite profile of Chrysanthemum morifolium flower fraction with that of its detannified fraction in relation to XO inhibitory activity using a rapid and effective metabolomics approach.

    METHODS: Proton nuclear magnetic resonance (1 H-NMR)-based metabolomics approach coupled with multivariate data analysis was utilised to characterise the XO inhibitors related to the antioxidant properties, total phenolic, and total flavonoid contents of the C. morifolium dried flowers.

    RESULTS: The highest XO inhibitory activity, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, total phenolic and flavonoid content with strong positive correlation between them were observed in the ethyl acetate (EtOAc) fraction. Detannified EtOAc showed higher XO inhibitory activity than non-detannified EtOAc fraction. A total of 17 metabolites were tentatively identified, of which three namely kaempferol, 4-hydroxybenzoic acid and apigenin, could be suggested to be responsible for the strong XO inhibitory activity. Additive interaction between 4-hydroxybenzoic acid and apigenin (or kaempferol) in XO inhibition was demonstrated in the interaction assay conducted.

    CONCLUSION: Chrysanthemum morifolium dried flower-part could be further explored as a natural XO inhibitor for its anti-hyperuricemic potential. Metabolomics approach served as an effective classification of plant metabolites responsible for XO inhibitory activity, and demonstrated that multiple active compounds can work additively in giving combined inhibitory effects.

    Matched MeSH terms: Flowers/chemistry
  7. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Flowers/chemistry
  8. Ali Khan MS, Mat Jais AM, Afreen A
    Biomed Res Int, 2013;2013:185476.
    PMID: 24350249 DOI: 10.1155/2013/185476
    The present study was conducted to evaluate the antiulcerogenic effect and recognize the basic mechanism of action of Tabernaemontana divaricata (L.) R. Br. flowers. T. divaricata flower methanolic extract (TDFME) was screened for antiulcer activity versus aspirin and ethanol induced gastric ulcers at three doses--125, 250, and 500 mg/kg--orally using misoprostol as a standard. Besides histopathological examination, seven parameters, that is, ulcer index, total protein, nonprotein sulphhydryls, mucin, catalase, malondialdehyde, and superoxide dismutase levels, were estimated. In addition to HPLC profiling, GC-MS analysis and electrospray ionization--high resolution mass spectral (ESI-HRMS) analysis of crude TDFME were carried out in an attempt to identify known phytochemicals present in the extract on the basis of m/z value. The results revealed a significant increase in the levels of catalase, superoxide dismutase, mucin, and nonprotein sulphhydryls, while they revealed a reduction in ulcer index, the levels of total protein, and malondialdehyde. Histopathological observations also demonstrated the protective effect. Though all the doses of TDFME exhibited gastroprotective function, higher doses were found to be more effective. Mass spectral analysis gave a few characteristic m/z values suggesting the presence of a few known indole alkaloids, while HPLC profiling highlighted the complexity of the extract. TDFME was found to exhibit its gastroprotective effect through antioxidant mechanism and by enhancing the production of gastric mucous.
    Matched MeSH terms: Flowers/chemistry*
  9. Khazaei S, Abdul Hamid R, Mohd Esa N, Ramachandran V, Aalam GT, Etemad A, et al.
    BMC Complement Altern Med, 2017 Feb 10;17(1):104.
    PMID: 28187719 DOI: 10.1186/s12906-017-1594-6
    BACKGROUND: Liver cancer is a high incidence and fatal disease, the fifth most frequent cancer worldwide that is usually diagnosed at an advanced stage. The number of deaths from liver cancer has not declined even following various therapies. Plant secondary metabolites and their semi-synthetic derivatives play a principal role in anti-cancer drug therapy, since they are effective in the treatment of specific characteristics while also reducing side effects. Allium atroviolaceum, a plant of the genus Allium has been used in folk medicine to protect against several diseases. However, cytotoxicity and the anti-proliferative effect of Allium atroviolaceum remain unclear. This work aims to investigate the anticancer properties of Allium atroviolaceum and the mechanism of action.

    METHODS: To evaluate the in vitro cytotoxicity of flower of Allium atroviolaceum, methanol extract at a dose range from 100 to 3.12 μg/ml was assessed against the HepG2 hepatocarcinoma cell line, and also on normal 3T3 cells, by monitoring proliferation using the MTT assay method. A microscopy study was undertaken to observe morphological changes of HepG2 cells after treatment and cell cycle arrest and apoptosis were studied using flow cytometry. The apoptosis mechanism of action was assessed by the level of caspase-3 activity and expression of apoptosis related genes, Bcl-2, Cdk1 and p53. The combination effect of the methanolic extract with doxorubicin was also investigated by determination of a combination index.

    RESULTS: The results demonstrated growth inhibition of cells in both dose- and time-dependent manners, while no cytotoxic effect on normal cell 3T3 was found. The results revealed the occurrence of apoptosis, illustrated by sub-G0 cell cycle arrest, the change in morphological feature and annexin-V and propidium iodide staining, which is correlated with Bcl-2 downregulation and caspase-3 activity, but p53-independent. In addition, a combination of Allium atroviolaceum and doxorubicin led to a significant synergistic effect.

    CONCLUSION: These findings suggest that Allium atroviolaceum flower extract has potential as a potent cytotoxic agent against HepG2 cell lines, as it has commendable anti-proliferative activities against human hepatocarcinoma and it can be considered as an effective adjuvant therapeutic agent after the clinical trials.

    Matched MeSH terms: Flowers/chemistry*
  10. Wee SL, Tan SB, Jürgens A
    Phytochemistry, 2018 Sep;153:120-128.
    PMID: 29906658 DOI: 10.1016/j.phytochem.2018.06.005
    The plants of the enigmatic genus Rafflesia are well known for their gigantic flowers and their floral features such as pungent floral scent and vivid dark color, which mimics the food/brood sites of carrion. However, information on the pollination biology of this plant group remains limited and mostly anecdotal. In the present paper, we studied the floral volatiles of R. cantleyi Solms-Laubach and their role in pollinator attraction. To achieve these aims, the floral scent was collected in situ in the field using a dynamic headspace method followed by chemical analysis via GC-MS. The olfactory preferences of pollinators to the identified chemical compounds, were tested singly and in blends, in flight tunnel bioassays and compared with responses to headspace floral extracts. In addition, flower-visiting calliphorid flies and the local carrion fly community were sampled and identified. Five species of calliphorid flies (subfamilies of Chrysomyinae and Calliphorinae), all females, were found on the flowers, whereas nine species were found in the traps that were baited with tainted meat in the surrounding habitat. However, only flower visitors of one blow fly species, Chrysomya chani Kurahashi, were observed to carry R. cantleyi pollen after visiting male flowers. The floral volatiles emitted by male flowers in full bloom were dominated by two sulphur-containing compounds, dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). These were accompanied by other minor compounds such as benzenoids (4), monoterpenoids (4), trace amounts of aliphatic compounds (1), and sesquiterpenes (1). In flight-tunnel bioassays, a female-specific positive response of C. chani flies to individual DMDS, DMTS, and a blend of DMDS and DMTS was evident. Our findings suggest that R. cantleyi biochemically mimics carrion and that relative ratio of oligosulfides in the floral scent play a key role in sex-biased pollinator specialization, attracting only female C. chani carrion flies to the flowers.
    Matched MeSH terms: Flowers/chemistry*
  11. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Flowers/chemistry*
  12. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
    Matched MeSH terms: Flowers/chemistry
  13. Sumathy V, Zakaria Z, Jothy SL, Gothai S, Vijayarathna S, Yoga Latha L, et al.
    Microb Pathog, 2014 Dec;77:7-12.
    PMID: 25457794 DOI: 10.1016/j.micpath.2014.10.004
    Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.
    Matched MeSH terms: Flowers/chemistry
  14. Ng WJ, Ken KW, Kumar RV, Gunasagaran H, Chandramogan V, Lee YY
    PMID: 25435614
    BACKGROUND: Different researches on therapeutic effects of honey have been conducted in different regions; however the study on the potential antibacterial activity of Malaysian honey is still limited. In this study, antibacterial activities of different monofloral honey samples were tested against several common human pathogenic bacteria.

    MATERIALS AND METHODS: The well-diffusion method, minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) techniques were employed to investigate the putative antibacterial activity of Malaysian monofloral honey from Koompassia excelsa (Becc.) Taub (Tualang), Melaleuca cajuputi Powell (Gelam) and Durio zibethinus Murr. (Durian). Honey samples were tested against Staphylococcus aureus ATCC6518 and ATCC25923, Staphylococcus epidermidis ATCC12228, Enterococcus faecium LMG16192, Enterococcus faecalis LMG16216 and ATCC29212, Escherichia coli ATCC25922, Salmonella enterica serovar Typhimurium ATCC14028 and Klebsiella pneumoniae ATCC13883.

    RESULTS: Marked variations were observed in the antibacterial activity of these honey samples. Durian honey failed to produce substantial antibacterial activity, whereas Tualang and Gelam honey showed a spectrum of antibacterial activity with their growth inhibitory effects against all of the tested bacterial species including vancomycin-resistant enterococci (VRE).

    CONCLUSION: Present findings suggested Gelam honey possesses highest antibacterial effect among the tested Malaysian honey samples.

    Matched MeSH terms: Flowers/chemistry*
  15. Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R
    Molecules, 2014 Apr 15;19(4):4624-34.
    PMID: 24739926 DOI: 10.3390/molecules19044624
    Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs) were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12±2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL) lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.
    Matched MeSH terms: Flowers/chemistry*
  16. Mahmood A, Omar MN, Ngah N
    Asian Pac J Trop Med, 2012 Nov;5(11):882-6.
    PMID: 23146802 DOI: 10.1016/S1995-7645(12)60164-3
    OBJECTIVE: To investigate the potential of Musa x paradisiaca (M. x paradisiaca) flower extracts in promoting milk production of lactating rats and its effects on growth of the suckling pups.

    METHODS: Galactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with petroleum ether, ethanol or water extracts of the flower. Lactating rats (n = 5) of Spraque Dawley with six pups each were administered with the extracts in the amount of 500 mg/kg body weight, while the control rats were given an equivalent amount of distilled water. The rats were daily administered via oral feeding starting from Day 5 until Day 14 and the performance of milk production was measured along the experimental period by weight-suckle-weight method. Results were statistically analyzed using SPSS by means of ANOVA at 0.05 and was expressed as their mean?standard deviation. The rates of pups' growth were measured as the weight gain along the experimental period.

    RESULTS: The rats treated with aqueous extract produced higher milk than control and ethanol groups. Aqueous extract was identified to increase milk production by 25%, while petroleum ether extract by 18%. The mean of yields produced by the rats during suckling period for aqueous, petroleum ether, ethanol and control were 4.62±2.45, 4.37±1.93, 3.65±1.89 and 3.69±1.79, respectively. Growth rates of pups for the rats treated with control, aqueous, ethanol extract and petroleum ether were (1.85±0.49), (1.78±0.56), (1.65±0.46) and (1.56±0.42) g/pup, respectively.

    CONCLUSIONS: The present study reveals the potential of M. x paradisiaca flower to enhance milk production of nursing mothers which could be exploited for commercialization of the isolated extract.

    Matched MeSH terms: Flowers/chemistry
  17. Khazaei S, Ramachandran V, Abdul Hamid R, Mohd Esa N, Etemad A, Moradipoor S, et al.
    Biomed Pharmacother, 2017 May;89:1216-1226.
    PMID: 28320088 DOI: 10.1016/j.biopha.2017.02.082
    Cervical cancer accounts for the second most frequent cancer and also third leading cause of cancer mortality (15%) among women worldwide. The major problems of chemotherapeutic treatment in cervical cancer are non-specific cytotoxicity and drug resistance. Plant-derived products, known as natural therapies, have been used for thousands of years in cancer treatment with a very low number of side effects. Allium atroviolaceum is a species in the genus Allium and Liliaceae family, which could prove to have beneficial effects on cancer treatment, although there is a lack of corresponding attention. The methanolic extract from the A.atroviolaceum flower displayed marked anticancer activity on HeLa human cervix carcinoma cells with much lower cytotoxic effects on normal cells (3T3). The A.atroviolaceum extract induced apoptosis, confirmed by cell cycle arrest at the sub-G0 (apoptosis) phase, characteristic morphological changes, evident DNA fragmentation, observed by fluorescent microscope, and early and late apoptosis detection by Annexin V. Furthermore, down-regulation of Bcl-2 and activation of caspase-9 and -3 strongly indicated that the mitochondrial pathway was involved in the apoptosis signal pathway. Moreover, combination of A.atroviolaceum extract with doxorubicin revealed a significant reduction of IC50and led to a synergistic effect. In summary, A.atroviolaceum displayed a significant anti-tumour effect through apoptosis induction in HeLa cells, suggesting that the A.atroviolaceum flower might have therapeutic potential against cervix carcinoma.
    Matched MeSH terms: Flowers/chemistry*
  18. Sumathy V, Zakaria Z, Chen Y, Latha LY, Jothy SL, Vijayarathna S, et al.
    Eur Rev Med Pharmacol Sci, 2013 Jun;17(12):1648-54.
    PMID: 23832733
    Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger.
    Matched MeSH terms: Flowers/chemistry*
  19. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Flowers/chemistry
  20. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, et al.
    PMID: 27318600 DOI: 10.1016/j.jphotobiol.2016.06.007
    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
    Matched MeSH terms: Flowers/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links