Displaying publications 1 - 20 of 127 in total

Abstract:
Sort:
  1. Md Noh MF, Gunasegavan RD, Mustafa Khalid N, Balasubramaniam V, Mustar S, Abd Rashed A
    Molecules, 2020 Oct 06;25(19).
    PMID: 33036314 DOI: 10.3390/molecules25194567
    Food composition database (FCD) provides the nutritional composition of foods. Reliable and up-to date FCD is important in many aspects of nutrition, dietetics, health, food science, biodiversity, plant breeding, food industry, trade and food regulation. FCD has been used extensively in nutrition labelling, nutritional analysis, research, regulation, national food and nutrition policy. The choice of method for the analysis of samples for FCD often depends on detection capability, along with ease of use, speed of analysis and low cost. Sample preparation is the most critical stage in analytical method development. Samples can be prepared using numerous techniques; however it should be applicable for a wide range of analytes and sample matrices. There are quite a number of significant improvements on sample preparation techniques in various food matrices for specific analytes highlighted in the literatures. Improvements on the technology used for the analysis of samples by specific instrumentation could provide an alternative to the analyst to choose for their laboratory requirement. This review provides the reader with an overview of recent techniques that can be used for sample preparation and instrumentation for food analysis which can provide wide options to the analysts in providing data to their FCD.
    Matched MeSH terms: Food Analysis/methods*
  2. Mahat NA, Meor Ahmad Z, Abdul Wahab R
    Trop Biomed, 2015 Sep;32(3):471-7.
    PMID: 26695207 MyJurnal
    Consumption of iced beverages is common in Malaysia although specific research focusing on its safety parameters such as presence of faecal coliforms and heavy metal elements remains scarce. A study conducted in Kelantan indicated that faecal coliforms were detected in the majority of the ice cube samples analyzed, largely attributable to improper handling. Hence, it was found pertinent to conduct similar study in other parts of the country such as Johor Bahru if the similar pattern prevailed. Therefore, this present cross sectional study which randomly sampled ice cubes from 30 permanent food outlets in Taman Universiti, Johor Bahru for detecting contamination by faecal coliforms and selected heavy metal elements (lead, copper, manganese and zinc) acquires significance. Faecal coliforms were detected in 11 (36.67%) of the samples, ranging between 1 CFU/100 mL to > 50 CFU/100 mL; two of the samples were grossly contaminated (>50 CFU/100 mL). Interestingly, while positive detection of lead was observed in 29 of the 30 ice cube samples (mean: 0.511±0.105 ppm; range: 0.489-0.674 ppm), copper, manganese and zinc were not detected. In addition, analysis on commercially bottled mineral water as well as in tap water samples did not detect such contaminations. Therefore, it appears that (1) contamination of faecal coliforms in ice cubes in food outlets in Malaysia may not be sporadic in pattern but rather prevalent and (2) the source of water used for manufacturing the ice cubes that contained significant amount of lead would suggest that (3) it was neither originated from the treated tap water supply nor bottled mineral water or (4) perhaps contaminated during manufacturing process. Further studies exploring the source of water used for manufacturing these ice cubes as well as the handling process among food operators deserve consideration.
    Matched MeSH terms: Food Analysis*
  3. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Food Analysis/methods
  4. Samsudin NI, Abdullah N
    Mycotoxin Res, 2013 May;29(2):89-96.
    PMID: 23242851 DOI: 10.1007/s12550-012-0154-7
    Red rice is a fermented product of Monascus spp. It is widely consumed by Malaysian Chinese who believe in its pharmacological properties. The traditional method of red rice preparation disregards safety regulation and renders red rice susceptible to fungal infestation and mycotoxin contamination. A preliminary study was undertaken aiming to determine the occurrence of mycotoxigenic fungi and mycotoxins contamination on red rice at consumer level in Selangor, Malaysia. Fifty red rice samples were obtained and subjected to fungal isolation, enumeration, and identification. Citrinin, aflatoxin, and ochratoxin-A were quantitated by ELISA based on the presence of predominant causal fungi. Fungal loads of 1.4 × 10(4) to 2.1 × 10(6) CFU/g exceeded Malaysian limits. Monascus spp. as starter fungi were present in 50 samples (100%), followed by Penicillium chrysogenum (62%), Aspergillus niger (54%), and Aspergillus flavus (44%). Citrinin was present in 100% samples (0.23-20.65 mg/kg), aflatoxin in 92% samples (0.61-77.33 μg/kg) and Ochratoxin-A in 100% samples (0.23-2.48 μg/kg); 100% citrinin and 76.09% aflatoxin exceeded Malaysian limits. The presence of mycotoxigenic fungi served as an indicator of mycotoxins contamination and might imply improper production, handling, transportation, and storage of red rice. Further confirmatory analysis (e.g., HPLC) is required to verify the mycotoxins level in red rice samples and to validate the safety status of red rice.
    Matched MeSH terms: Food Analysis*
  5. Karupaiah T, Swee CS, Abdullah R
    J Ren Nutr, 2001 Oct;11(4):220-7.
    PMID: 11680003
    To develop an education package with uniform nutrition messages appropriate for Malaysian patients undergoing hemodialysis.
    Matched MeSH terms: Food Analysis
  6. Ahmad Nizar NN, Ali ME, Hossain MAM, Sultana S, Ahamad MNU
    PMID: 29447579 DOI: 10.1080/19440049.2018.1440644
    The demand for crocodile meat is quickly growing because of its exotic and organoleptic appeal and also the low content of cholesterol and lipids. Moreover, crocodile oil and blood have been used in alternative medicines for treating asthma and several other ailments since ancient times. Furthermore, crocodile hides have great demand in leather industries. All of these have collectively contributed to the extensive hunting, illegal trading and consequent decline of crocodiles in most parts of the world. To keep space with the growing demands, some crocodile species such as Crocodylus porosus have been raised in farms and its commercial trades have been legalised. However, demand for wild crocodiles in foods and medicines has continued in high gear. Recently, several DNA-based methods have been proposed for crocodile detection, but those assays are based on single gene and longer-sized amplicon targets that break down during extensive processing. To address this gap, here we developed and validated a highly stable double gene targeted multiplex PCR assay for the identification of C. porosus materials in commercial products. The assay involved two short sites from C. porosus atp6 (77 bp) and cytb (127 bp) genes and a universal internal control (99 bp) for eukaryotes. The PCR primers were cross-tested against 18 species and validated under pure and mixed matrices under extensive boiling, autoclaving and microwave cooking conditions. Finally, it was used to identify five crocodile-based commercial products. The lower limits of detection for atp6 and cytb genes were 0.001 ng and 0.01 ng DNA, respectively, in pure meat and 1% under mixed matrices. Some inherent features, such as 77-127 bp amplicon sizes, exceptional stability and superior sensitivity, suggested the assay could be used for the identification of C. porosus in any forensic specimen.
    Matched MeSH terms: Food Analysis
  7. Kuswandi B, Irmawati T, Hidayat MA, Jayus, Ahmad M
    Sensors (Basel), 2014;14(2):2135-49.
    PMID: 24473284 DOI: 10.3390/s140202135
    A simple visual ethanol biosensor based on alcohol oxidase (AOX) immobilised onto polyaniline (PANI) film for halal verification of fermented beverage samples is described. This biosensor responds to ethanol via a colour change from green to blue, due to the enzymatic reaction of ethanol that produces acetaldehyde and hydrogen peroxide, when the latter oxidizes the PANI film. The procedure to obtain this biosensor consists of the immobilization of AOX onto PANI film by adsorption. For the immobilisation, an AOX solution is deposited on the PANI film and left at room temperature until dried (30 min). The biosensor was constructed as a dip stick for visual and simple use. The colour changes of the films have been scanned and analysed using image analysis software (i.e., ImageJ) to study the characteristics of the biosensor's response toward ethanol. The biosensor has a linear response in an ethanol concentration range of 0.01%-0.8%, with a correlation coefficient (r) of 0.996. The limit detection of the biosensor was 0.001%, with reproducibility (RSD) of 1.6% and a life time up to seven weeks when stored at 4 °C. The biosensor provides accurate results for ethanol determination in fermented drinks and was in good agreement with the standard method (gas chromatography) results. Thus, the biosensor could be used as a simple visual method for ethanol determination in fermented beverage samples that can be useful for Muslim community for halal verification.
    Matched MeSH terms: Food Analysis/methods*
  8. Razzak MA, Hamid SB, Ali ME
    PMID: 26437367 DOI: 10.1080/19440049.2015.1087060
    Food forgery has posed considerable risk to public health, religious rituals, personal budget and wildlife. Pig, dog, cat, rat and monkey meat are restricted in most religions, but their sporadic adulteration are rampant. Market controllers need a low-cost but reliable technique to track and trace suspected species in the food chain. Considering the need, here we documented a lab-on-a-chip-based multiplex polymerase chain reaction (PCR) assay for the authentication of five non-halal meat species in foods. Using species-specific primers, 172, 163, 141, 129 and 108-bp sites of mitochondrial ND5, ATPase 6 and cytochrome b genes were amplified to detect cat, dog, pig, monkey and rat species under complex matrices. Species-specificity was authenticated against 20 different species with the potential to be used in food. The targets were stable under extreme sterilisation (121°C at 45 psi for 2.5 h) which severely degrades DNA. The assay was optimised under the backgrounds of various commercial meat products and validated for the analysis of meatballs, burgers and frankfurters, which are popular fast food items across the globe. The assay was tested to detect 0.1% suspected meats under commercial backgrounds of marketed foods. Instead of simplex PCR which detects only one species at a time, such a multiplex platform can reduce cost by at least fivefolds by detecting five different species in a single assay platform.
    Matched MeSH terms: Food Analysis*
  9. Khandaker MU, Mohd Nasir NL, Asaduzzaman K, Olatunji MA, Amin YM, Kassim HA, et al.
    Chemosphere, 2016 Jul;154:528-536.
    PMID: 27085312 DOI: 10.1016/j.chemosphere.2016.03.121
    Malaysia, a rapidly growing industrial country, is susceptible to pollution via large-scale industrial engagements and associated human activities. One particular concern is the potential impact upon the quality of locally resourced vegetables, foodstuffs that contain important nutrients necessary for good health, forming an essential part of the Malaysian diet. As a part of this, it is of importance for there to be accurate knowledge of radioactive material uptake in these vegetables, not least in respect of any public health detriment. Herein, using HPGe γ-ray spectrometry, quantification has been performed of naturally occurring radionuclides in common edible vegetables and their associated soils. From samples analyses, the soil activity concentration ranges (in units of Bq/kg) for (226)Ra, (232)Th and (40)K were respectively 1.33-30.90, 0.48-26.80, 7.99-136.5 while in vegetable samples the ranges were 0.64-3.80, 0.21-6.91, 85.53-463.8. Using the corresponding activities, the transfer factors (TFs) from soil-to-vegetables were estimated, the transfers being greatest for (40)K, an expected outcome given the essentiality of this element in support of vigorous growth. The TFs of (226)Ra and (232)Th were found to be in accord with available literature data, the values indicating the mobility of these radionuclides to be low in the studied soils. Committed effective dose and the associated life-time cancer risk was estimated, being found to be below the permissible limit proposed by UNSCEAR. Results for the studied media show that the prevalent activities and mobilities pose no significant threat to human health, the edible vegetables being safe for consumption.
    Matched MeSH terms: Food Analysis
  10. Drewnowski A, Tappy L, Forde CG, McCrickerd K, Tee ES, Chan P, et al.
    Asia Pac J Clin Nutr, 2019;28(3):645-663.
    PMID: 31464412 DOI: 10.6133/apjcn.201909_28(3).0025
    BACKGROUND AND OBJECTIVES: Rising obesity in Southeast Asia, one consequence of economic growth, has been linked to a rising consumption of energy from added sugars. This symposium, organized by ILSI Southeast Asia, explored regional issues related to dietary sugars and health and identified ways in which these issues could be addressed by regional regulatory agencies, food producers, and the consumer.

    METHODS AND STUDY DESIGN: Papers on the following topics were presented: 1) current scientific evidence on the effects of sugars and non-caloric sweeteners on body weight, health, and eating behaviors; 2) innovations by food producers to reduce sugar consumption in the region; 3) regional dietary surveillance of sugar consumption and suggestions for consumer guidance. A panel discussion explored effective approaches to promote healthy eating in the region.

    RESULTS: Excessive consumption of energy in the form of added sugars can have adverse consequences on diet quality, lipid profiles, and health. There is a need for better surveillance of total and added sugars intakes in selected Southeast Asian countries. Among feasible alternatives to corn sweeteners (high fructose corn syrup) and cane sugar are indigenous sweeteners with low glycemic index (e.g., coconut sap sugar). Their health benefits should be examined and regional sugar consumption tracked in detail. Product reformulation to develop palatable lower calorie alternatives that are accepted by consumers continues to be a challenge for industry and regulatory agencies.

    CONCLUSIONS: Public-private collaborations to develop healthy products and effective communication strategies can facilitate consumer acceptance and adoption of healthier foods.

    Matched MeSH terms: Food Analysis*
  11. Rashid NR, Ali ME, Hamid SB, Rahman MM, Razzak MA, Asing, et al.
    PMID: 25906074 DOI: 10.1080/19440049.2015.1039073
    Being the third-largest primate population has not made macaque (Macaca fascicularis sp.) monkeys less exposed to threats and dangers. Despite wildlife protection, they have been widely hunted and consumed in several countries because of their purported nutritional values. In addition to trading as pure bush meats in several places, monkey meat has been sold in meatball and soup products in Indonesia. Thus the possibility of macaque meat trafficking under the label of common meats is quite high. This paper reports the development of a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay with the shortest amplicon length for the confirmed detection of monkey meat under compromised states which are known to degrade DNA. We amplified a 120-bp region of d-loop gene using a pair of macaque-specific primers and confirmed their specificity for the target species through cross-challenging against 17 different species using a 141-bp site of an 18 S rRNA gene as an endogenous control for eukaryotes. This eliminated the possibilities of any false-negative detection with complex matrices or degraded specimens. The detection limit was 0.00001 ng DNA in a pure state and 0.1% of meat in mixed matrices and commercial meatball products. RFLP analysis further authenticated the originality of the PCR product and distinctive restriction patterns were found upon AluI and CViKI-1 digestion. A micro-fluidic lab-on-a-chip automated electrophoretic system separated the fragments with high resolution. The assay was validated for screening commercial meatball products with sufficient internal control.
    Matched MeSH terms: Food Analysis/methods*
  12. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
    Matched MeSH terms: Food Analysis*
  13. Rohman A, Ariani R
    ScientificWorldJournal, 2013;2013:740142.
    PMID: 24319381 DOI: 10.1155/2013/740142
    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.
    Matched MeSH terms: Food Analysis/methods*
  14. Nemati M, Kamilah H, Huda N, Ariffin F
    Int J Food Sci Nutr, 2015 Aug;67(5):535-40.
    PMID: 27144766 DOI: 10.1080/09637486.2016.1179269
    Avoidance of dairy products due to lactose intolerance can lead to insufficiency of calcium (Ca) in the body. In an approach to address this problem, tuna bone powder (TBP) was formulated as a calcium supplement to fortify bakery products. In a study, TBP recovered by alkaline treatment contained 38.16 g/100 g of calcium and 23.31 g/100 g of phosphorus. The ratio of Ca:P that was close to 2:1 was hence comparable to that in human bones. The availability of calcium in TBP was 53.93%, which was significantly higher than most calcium salts, tricalcium phosphate (TCP) being the exception. In vitro availability of calcium in TBP-fortified cookies or TCP-fortified cookies were comparable at 38.9% and 39.5%, respectively. These values were higher than the readings from TBP-fortified bread (36.7%) or TCP-fortified bread (37.4%). Sensory evaluation of bakery products containing TBP or TCP elicited comparable scores for the two additives from test panels. Hence, TBP could be used in the production of high calcium bakery products that would enjoy consumer acceptance.
    Matched MeSH terms: Food Analysis
  15. Shyam S, Wai TN, Arshad F
    Asia Pac J Clin Nutr, 2012;21(2):201-8.
    PMID: 22507605
    This paper outlines the methodology to add glycaemic index (GI) and glycaemic load (GL) functionality to food DietPLUS, a Microsoft Excel-based Malaysian food composition database and diet intake calculator. Locally determined GI values and published international GI databases were used as the source of GI values. Previously published methodology for GI value assignment was modified to add GI and GL calculators to the database. Two popular local low GI foods were added to the DietPLUS database, bringing up the total number of foods in the database to 838 foods. Overall, in relation to the 539 major carbohydrate foods in the Malaysian Food Composition Database, 243 (45%) food items had local Malaysian values or were directly matched to International GI database and another 180 (33%) of the foods were linked to closely-related foods in the GI databases used. The mean ± SD dietary GI and GL of the dietary intake of 63 women with previous gestational diabetes mellitus, calculated using DietPLUS version3 were, 62 ± 6 and 142 ± 45, respectively. These values were comparable to those reported from other local studies. DietPLUS version3, a simple Microsoft Excel-based programme aids calculation of diet GI and GL for Malaysian diets based on food records.
    Matched MeSH terms: Food Analysis*
  16. Hun Lee T, Hau Lee C, Alia Azmi N, Kavita S, Wong S, Znati M, et al.
    Chem Biodivers, 2020 Jan;17(1):e1900419.
    PMID: 31721431 DOI: 10.1002/cbdv.201900419
    This work investigated the polar (PC: protein, amino acid and metabolite) and non-polar (NPC: fatty acid) compounds and bioactivity characteristics of the EBN harvested from the state of Johor in Malaysia. The electrophoretic gels exhibited 15 protein bands (16-173 kD) with unique protein profile. Amino acids analysis by AccQ⋅Tag method revealed 18 types of amino acids in EBN. Metabolite profiling was performed using High-Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometer (HPLC-QTOF/MS) technique and a total of 54 compounds belonging to different groups were detected and identified. These findings help to uncover the relation of therapeutic activity of EBN. The EBN was further extracted with AcOEt and BuOH. The AcOEt extract was fractionated into three fractions (F1 -F3 ), and the high triglyceride content in F2 was verified by gC-FID. The three groups of fatty acids discovered in EBN are 48.43 % of poly-unsaturated (PUFA), 25.35 % of saturated fatty acids (SFA) and 24.74 % of mono-unsaturated fat (MUFA). This is the first time to report results ofEBN, BuOH, and AcOEt extracts and of fraction F2 (TEBN) on their analysis for their antioxidant activities by DPPH, ABTS and catalase assay and for their paraoxonase and anti-tyrosinase activities. The results showed that TEBN exhibited the significant bioactivity in all assays. These findings suggest that TEBN is a good source for natural bioactive compounds in promoting body vigor. Current work widened the content of EBN especially on the triglyceride and also marked the content of specific location (Johor, Malaysia) of EBN origin.
    Matched MeSH terms: Food Analysis*
  17. Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, et al.
    Crit Rev Food Sci Nutr, 2018 Jun 13;58(9):1495-1511.
    PMID: 28033035 DOI: 10.1080/10408398.2016.1264361
    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
    Matched MeSH terms: Food Analysis/methods*
  18. Iradukunda C, Aida WMW, Ouafi AT, Barkouch Y, Boussaid A
    J Dairy Res, 2018 Feb;85(1):114-120.
    PMID: 29468995 DOI: 10.1017/S0022029917000796
    Matched MeSH terms: Food Analysis
  19. Navarrete-Muñoz EM, Wark PA, Romaguera D, Bhoo-Pathy N, Michaud D, Molina-Montes E, et al.
    Am J Clin Nutr, 2016 Sep;104(3):760-8.
    PMID: 27510540 DOI: 10.3945/ajcn.116.130963
    BACKGROUND: The consumption of sweet beverages has been associated with greater risk of type 2 diabetes and obesity, which may be involved in the development of pancreatic cancer. Therefore, it has been hypothesized that sweet beverages may increase pancreatic cancer risk as well.

    OBJECTIVE: We examined the association between sweet-beverage consumption (including total, sugar-sweetened, and artificially sweetened soft drink and juice and nectar consumption) and pancreatic cancer risk.

    DESIGN: The study was conducted within the European Prospective Investigation into Cancer and Nutrition cohort. A total of 477,199 participants (70.2% women) with a mean age of 51 y at baseline were included, and 865 exocrine pancreatic cancers were diagnosed after a median follow-up of 11.60 y (IQR: 10.10-12.60 y). Sweet-beverage consumption was assessed with the use of validated dietary questionnaires at baseline. HRs and 95% CIs were obtained with the use of multivariable Cox regression models that were stratified by age, sex, and center and adjusted for educational level, physical activity, smoking status, and alcohol consumption. Associations with total soft-drink consumption were adjusted for juice and nectar consumption and vice versa.

    RESULTS: Total soft-drink consumption (HR per 100 g/d: 1.03; 95% CI: 0.99, 1.07), sugar-sweetened soft-drink consumption (HR per 100 g/d: 1.02; 95% CI: 0.97, 1.08), and artificially sweetened soft-drink consumption (HR per 100 g/d: 1.04; 95% CI: 0.98, 1.10) were not associated with pancreatic cancer risk. Juice and nectar consumption was inversely associated with pancreatic cancer risk (HR per 100 g/d: 0.91; 95% CI: 0.84, 0.99); this association remained statistically significant after adjustment for body size, type 2 diabetes, and energy intake.

    CONCLUSIONS: Soft-drink consumption does not seem to be associated with pancreatic cancer risk. Juice and nectar consumption might be associated with a modest decreased pancreatic cancer risk. Additional studies with specific information on juice and nectar subtypes are warranted to clarify these results.

    Matched MeSH terms: Functional Food/analysis
  20. Lal A, Tan G, Chai M
    Anal Sci, 2008 Feb;24(2):231-6.
    PMID: 18270414
    A new extraction and cleanup procedure with gas chromatography was developed for the sensitive determination of acephate, dimethoate, malathion, diazinon, quinalphos, chlorpyrifos, profenofos, alpha-endosulfan, beta-endosulfan, chlorothalonil and carbaryl using 1-chloro-4-fluorobenzene as an internal standard in fruits and vegetables. Several extracting and eluting solvents for solid-phase extraction were investigated. The overall extracting solvent with a mixture of acetone:ethyl acetate:hexane (10:80:10, v/v/v) and a eluting solvent of 5% acetone in hexane used with the RPC18 cartridge gave the best recovery for all of the investigated pesticides, and minimized the interference from co-extractants. Under the optimal extraction and clean-up conditions, recoveries of 85 - 99% with RSD < 5.0% (n = 3) for most of the pesticides at the 0.02 - 0.5 mg/kg level were obtained. The limit of detection was between 0.005 - 0.01 mg/kg and the limit of quantification was 0.01 mg/kg. This analytical procedure was characterized with high accuracy and acceptable sensitivity to meet requirements for monitoring pesticides in crops.
    Matched MeSH terms: Food Analysis/instrumentation; Food Analysis/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links