Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Sheikh-Ali SI, Ahmad A, Mohd-Setapar SH, Zakaria ZA, Abdul-Talib N, Khamis AK, et al.
    J Microbiol, 2014 Oct;52(10):807-18.
    PMID: 25269603 DOI: 10.1007/s12275-014-4294-7
    The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.
    Matched MeSH terms: Food Contamination/prevention & control*
  2. Jalili M, Jinap S, Son R
    PMID: 21416415 DOI: 10.1080/19440049.2010.551300
    The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
    Matched MeSH terms: Food Contamination/prevention & control*
  3. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Food Contamination/prevention & control*
  4. Yibadatihan S, Jinap S, Mahyudin NA
    PMID: 25396715 DOI: 10.1080/19440049.2014.978396
    Palm kernel cake (PKC) is a useful source of protein and energy for livestock. Recently, it has been used as an ingredient in poultry feed. Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans. This concern has accentuated the need for the evaluation of mycotoxins in PKC. Furthermore, a method for quantifying mycotoxins in PKC has so far not been established. The aims of this study were therefore (1) to develop a method for the simultaneous determination of mycotoxins in PKC and (2) to validate and verify the method. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using an electrospray ionisation interface (ESI) in both positive- and negative-ion modes was developed for the simultaneous determination of aflatoxins (AFB₁, AFB₂, AFG₁ and AFG₂), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), fumonisins (FB₁ and FB₂), T-2 and HT-2 toxin in PKC. An optimum method using a 0.2 ml min⁻¹ flow rate, 0.2% formic acid in aqueous phase, 10% organic phase at the beginning and 90% organic phase at the end of the gradient was achieved. The extraction of mycotoxins was performed using a solvent mixture of acetonitrile-water-formic acid (79:20:1, v/v) without further clean-up. The mean recoveries of mycotoxins in spiked PKC samples ranged from 81% to 112%. Limits of detection (LODs) and limits of quantification (LOQs) for mycotoxin standards and PKC samples ranged from 0.02 to 17.5 μg kg⁻¹ and from 0.06 to 58.0 μg kg⁻¹, respectively. Finally, the newly developed method was successfully applied to PKC samples. The results illustrated the fact that the method is efficient and accurate for the simultaneous multi-mycotoxin determination in PKC, which can be ideal for routine analysis.
    Matched MeSH terms: Food Contamination/prevention & control*
  5. Malcolm TTH, Chang WS, Loo YY, Cheah YK, Radzi CWJWM, Kantilal HK, et al.
    Int J Food Microbiol, 2018 Nov 02;284:112-119.
    PMID: 30142576 DOI: 10.1016/j.ijfoodmicro.2018.08.012
    Kitchen mishandling practices contribute to a large number of foodborne illnesses. In this study, the transfer and cross-contamination potential of Vibrio parahaemolyticus from bloody clams to ready-to-eat food (lettuce) was assessed. Three scenarios were investigated: 1) direct cross-contamination, the transfer of V. parahaemolyticus from bloody clams to non-food contact surfaces (hands and kitchen utensils) to lettuce (via slicing), was evaluated; 2) perfunctory decontamination, the efficacy of two superficial cleaning treatments: a) rinsing in a pail of water, and b) wiping with a kitchen towel, were determined; and 3) secondary cross-contamination, the microbial transfer from cleaning residuals (wash water or stained kitchen towel) to lettuce was assessed. The mean of percent transfer rates through direct contact was 3.6%, and an average of 3.5% of total V. parahaemolyticus was recovered from sliced lettuce. The attempted treatments reduced the transferred population by 99.0% (rinsing) and 94.5% (wiping), and the relative amount of V. parahaemolyticus on sliced lettuce was reduced to 0.008%. V. parahaemolyticus exposure via secondary cross-contamination was marginal. The relative amount of V. parahaemolyticus recovered from washed lettuce was 0.07%, and the transfers from stained kitchen towel to lettuce were insubstantial. Our study highlights that V. parahaemolyticus was readily spread in the kitchen, potentially through sharing of non-food contact surfaces. Results from this study can be used to better understand and potentially raising the awareness of proper handling practices to avert the spread of foodborne pathogens.
    Matched MeSH terms: Food Contamination/prevention & control*
  6. Hanasil NS, Raja Ibrahim RK, Duralim M, Sapingi HHJ, Mahdi MA
    Appl Spectrosc, 2020 Dec;74(12):1452-1462.
    PMID: 32166979 DOI: 10.1177/0003702820915532
    In this work, principal component analysis (PCA) was utilized to analyze laser-induced breakdown spectroscopy (LIBS) signals of the extracted chicken fat, lamb fat, beef fat, and lard froze using two different freezing methods. The frozen samples were ablated using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with a wavelength of 1064 nm, 170 mJ pulse energy, and 6 ns pulse duration to produce plasma on target surfaces. The samples were ablated using 30-60 shots of the laser beam at different spots. Stronger LIBS signals from the extracted chicken fat and lamb fat were obtained with liquid nitrogen (LN2) method. However, LIBS signals obtained from the freezer freezing method were found to be stronger for extracted beef fat and lard. The PCA was then used to visualize the LIBS spectra of extracted animal fats into a score plot. Data points of each extracted animal fat were divided into three groups representing LIBS spectra collected at the early, middle, and end part of the ablation process. The score plot revealed that the data points of the three groups of frozen extracted animal fats using the LN2 method were more closely clustered than those frozen in the freezer. Good discrimination with 97% of the variance was achieved between the extracted chicken fat, lamb fat, beef fat, and lard using the LN2 method in the three-dimensional score plot. LIBS signals of the extracted animal fats produced from the LN2 method were found to be more stable than those from the freezer method.
    Matched MeSH terms: Food Contamination/prevention & control
  7. Jalili M, Jinap S
    PMID: 22971039 DOI: 10.1080/19440049.2012.719640
    A simple method for the reduction of aflatoxins B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁), G₂ (AFG₂) and ochratoxin A (OTA) in white pepper was studied. Response surface methodology (RSM) was applied to determine the effect of four variables, which included time (20-60 min), temperature (30-70°C), calcium hydroxide (Ca(OH)₂) (0-1%) and hydrogen peroxide (H₂O₂) (1-3%) during the washing step of white pepper. The efficacy of the method was evaluated by the determination of mycotoxins by HPLC with fluorescence detection (FD). Statistical analysis showed that the experimental data could be adequately fitted into a second-order polynomial model, with a multiple regression coefficient (R²) in the range of 0.805-0.907 for AFG₂ and AFG₁, respectively. The optimal condition was 57.8 min, 62.0°C, of 0.6% (w/v) and 2.8% (v/v) for time, temperature, Ca(OH)₂ and H₂O₂ respectively. By applying the optimum condition, the mycotoxins reduction was found to be in the range of 68.5-100% for AFB₂ and AFG₁ respectively.
    Matched MeSH terms: Food Contamination/prevention & control*
  8. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Food Contamination/prevention & control*
  9. Mir SA, Siddiqui MW, Dar BN, Shah MA, Wani MH, Roohinejad S, et al.
    J Appl Microbiol, 2020 Sep;129(3):474-485.
    PMID: 31800143 DOI: 10.1111/jam.14541
    Consumers' demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.
    Matched MeSH terms: Food Contamination/prevention & control*
  10. Ramli MR, Tarmizi AHA, Hammid ANA, Razak RAA, Kuntom A, Lin SW, et al.
    J Oleo Sci, 2020 Aug 06;69(8):815-824.
    PMID: 32641608 DOI: 10.5650/jos.ess20021
    Approximately 900 tonne of crude palm oil (CPO) underwent washing using 5 to 10% hot water (90 to 95°C) at a palm oil mill. The aim of the CPO washing was to eliminate and/or reduce total chlorine content present in the conventional CPO, as it is known as the main precursor for the formation of 3-monochloropropane-1, 2-diol esters (3-MCPDE). By a simple hot water washing, more than 85% of the total chlorine was removed. However, washing did not have significant (p > 0.05) effect on other oil quality parameters such as the deterioration of bleachability index (DOBI), free fatty acid (FFA) content and diacylglycerol (DAG) content of the oil. The latter has been established as the main precursor for glycidyl esters (GE) formation. The treated CPO was then transported using tankers and further refined at a commercial refinery. Refining of washed CPO resulted in significantly (p < 0.05) lower formation of 3-MCPDE, but GE content remained slightly high. Post-treatment of refined oil significantly reduced the GE content (p < 0.05) to an acceptable level whilst almost maintaining the low 3-MCPDE level. The study has proven that water washing of CPO prior to refining and subsequent post-refining is so far the most effective way to produce good quality refined oil with considerably low 3-MCPDE and GE contents. Dry fractionation of refined palm oil showed these contaminants partitioned more into the liquid olein fraction compared to the stearin fraction.
    Matched MeSH terms: Food Contamination/prevention & control*
  11. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M
    J Appl Microbiol, 2012 Oct;113(4):925-39.
    PMID: 22805053 DOI: 10.1111/j.1365-2672.2012.05398.x
    To investigate the antifungal activity of conventional chitosan and chitosan-loaded nanoemulsions against anthracnose caused by Colletotrichum spp. isolated from different tropical fruits.
    Matched MeSH terms: Food Contamination/prevention & control*
  12. Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP
    Compr Rev Food Sci Food Saf, 2020 03;19(2):643-669.
    PMID: 33325175 DOI: 10.1111/1541-4337.12541
    In this review, we present the current information on development and applications of biological control against phytopathogenic organisms as well as mycotoxigenic fungi in Malaysia as part of the integrated pest management (IPM) programs in a collective effort to achieve food security. Although the biological control of phytopathogenic organisms of economically important crops is well established and widely practiced in Malaysia with considerable success, the same cannot be said for mycotoxigenic fungi. This is surprising because the year round hot and humid Malaysian tropical climate is very conducive for the colonization of mycotoxigenic fungi and the potential contamination with mycotoxins. This suggests that less focus has been made on the control of mycotoxigenic species in the genera Aspergillus, Fusarium, and Penicillium in Malaysia, despite the food security and health implications of exposure to the mycotoxins produced by these species. At present, there is limited research in Malaysia related to biological control of the key mycotoxins, especially aflatoxins, Fusarium-related mycotoxins, and ochratoxin A, in key food and feed chains. The expected threats of climate change, its impacts on both plant physiology and the proliferation of mycotoxigenic fungi, and the contamination of food and feed commodities with mycotoxins, including the discovery of masked mycotoxins, will pose significant new global challenges that will impact on mycotoxin management strategies in food and feed crops worldwide. Future research, especially in Malaysia, should urgently focus on these challenges to develop IPM strategies that include biological control for minimizing mycotoxins in economically important food and feed chains for the benefit of ensuring food safety and food security under climate change scenarios.
    Matched MeSH terms: Food Contamination/prevention & control*
  13. Hajeb P, Jinap S, Shakibazadeh Sh, Afsah-Hejri L, Mohebbi GH, Zaidul IS
    PMID: 25090228 DOI: 10.1080/19440049.2014.942707
    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.
    Matched MeSH terms: Food Contamination/prevention & control*
  14. Jassim SA, Abdulamir AS, Abu Bakar F
    World J Microbiol Biotechnol, 2012 Jan;28(1):47-60.
    PMID: 22806779 DOI: 10.1007/s11274-011-0791-6
    To explore new approaches of phage-based bio-process of specifically pathogenic Escherichia coli bacteria in food products within a short period. One hundred and forty highly lytic designed coliphages were used. Escherichia coli naturally contaminated and Enterohemorrhagic Escherichia coli experimentally inoculated samples of lettuce, cabbage, meat, and egg were used. In addition, experimentally produced biofilms of E. coli were tested. A phage concentration of 10(3) PFU/ml was used for food products immersion, and for spraying of food products, 10(5) PFU/ml of a phage cocktail was used by applying a 20-s optimal dipping time in a phage cocktail. Food samples were cut into pieces and were either sprayed with or held in a bag immersed in lambda buffer containing a cocktail of 140 phages. Phage bio-processing was successful in eliminating completely E. coli in all processed samples after 48 h storage at 4°C. Partial elimination of E. coli was observed in earlier storage periods (7 and 18 h) at 24° and 37°C. Moreover, E. coli biofilms were reduced >3 log cycles upon using the current phage bio-processing. The use of a phage cocktail of 140 highly lytic designed phages proved highly effective in suppressing E. coli contaminating food products. Proper decontamination/prevention methods of pathogenic E. coli achieved in this study can replace the current chemically less effective decontamination methods.
    Matched MeSH terms: Food Contamination/prevention & control*
  15. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM
    J Food Prot, 2004 Jan;67(1):103-9.
    PMID: 14717359
    While there is good epidemiological evidence for foods as vehicles for norovirus transmission, the precise means of spread and its control remain unknown. The feline calicivirus was used as a surrogate for noroviruses to study infectious virus transfer between hands and selected types of foods and environmental surfaces. Assessment of the potential of selected topicals in interrupting such virus transfer was also made. Ten microliters of inoculum of feline calicivirus deposited onto each fingerpad of adult subjects was allowed to air dry and the contaminated area on individual fingerpads was pressed (10 s at a pressure of 0.2 to 0.4 kg/cm2) onto 1-cm-diameter disks of ham, lettuce, or brushed stainless steel. The virus remaining on the donor and that transferred to the recipient surfaces was eluted and plaque assayed. Virus transfer to clean hands from experimentally contaminated disks of ham, lettuce, and stainless steel was also tested. Nearly 46 +/- 20.3, 18 +/- 5.7, and 13 +/- 3.6% of infectious virus was transferred from contaminated fingerpads to ham, lettuce, and metal disks, respectively. In contrast, approximately 6 +/- 1.8, 14 +/- 3.5, and 7 +/- 1.9% virus transfer occurred, respectively, from ham, lettuce, and metal disks to hands. One-way analysis of variance test showed that pretreatment (washing) of the fingerpads either with water or with both topical agent and water significantly (P < 0.05) reduced virus transfer to < or = 0.9%, as compared with < or = 2.3 and < or = 3.4% transfer following treatments with either 75% (vol/vol) ethanol or a commercial hand gel containing 62% ethanol, respectively. Despite wide variations in virus transfer among the targeted items used, intervention agents tested reduced virus transfer significantly (P < 0.05) when compared with that without such treatments (71 +/- 8.9%). These findings should help in a better assessment of the potential for cross-contamination of foods during handling and also assist in developing more effective approaches to foodborne spread of norovirus infections.
    Matched MeSH terms: Food Contamination/prevention & control
  16. Chan YY, Abd Nasir MH, Yahaya MA, Salleh NM, Md Dan AD, Musa AM, et al.
    Int J Food Microbiol, 2008 Feb 29;122(1-2):221-6.
    PMID: 18187222 DOI: 10.1016/j.ijfoodmicro.2007.11.063
    A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.
    Matched MeSH terms: Food Contamination/prevention & control
  17. Shirazinejad A, Ismail N, Bhat R
    Foodborne Pathog Dis, 2010 Dec;7(12):1531-6.
    PMID: 21034165 DOI: 10.1089/fpd.2010.0616
    Fresh raw shrimps were dipped for 10, 20, and 30 min at room temperature (25°C ± 1°C) in lactic acid (LA; 1.5%, 3.0%, v/v) to evaluate their antipathogenic effects against Vibrio cholerae, Vibrio parahaemolyticus, Salmonella entreitidis, and Escherichia coli O157:H7 inoculated at a level of 10(5) CFU/g. Significant reductions in the population of all these pathogenic bacteria were recorded after dipping treatments, which were correlated to the corresponding LA concentrations and treatment time. With respect to the microbial quality, 3.0% LA treatment for 10 min was acceptable in reducing the pathogenic bacteria. Additionally, sensory evaluation results revealed a 10-min dip in 3.0% LA to be more acceptable organoleptically compared with 20 and 30 min of treatments. Results of the present study are envisaged to be useful for commercial applications for effective decontamination of shrimp.
    Matched MeSH terms: Food Contamination/prevention & control*
  18. Toh PS
    Int J Environ Health Res, 2002 Dec;12(4):311-6.
    PMID: 12596745 DOI: 10.1080/0960312021000056447
    This study investigates the practices and knowledge of a Control Authority dealing with the environment and the safety and control of hawker foods. Experience and background education are used as likely determinants of food safety practices and knowledge of the control authority. A total of 60 questionnaires were distributed to the Health Inspectors (HIs) in the Hawkers' and Health Departments, City Hall, Kuala Lumpur. The return rate was 93%. The structured questionnaire contained 14 main food safety practices and knowledge constructs. Significance was found pertaining to knowledge of HIs with different experience backgrounds but experience was not demonstrated to impact on practices of HIs. However, education was noted to have significantly but inconsistently influenced certain Practices and Knowledge scores of HIs. A Pearson bivariate coefficient characterised an association between food safety practices and knowledge of the control authority. The findings: (1) highlight the actual shortcomings in the staff resources relating to environmental health, food safety, foodborne illnesses and their control, and (2) provide information on the control aspect within the hawker micro-industry with the view of protecting the public from health hazards arising from the hawkers' practices and consumption of hawker foods.
    Matched MeSH terms: Food Contamination/prevention & control*
  19. Jairoun AA, Shahwan M, Zyoud SH
    Sci Rep, 2020 11 02;10(1):18824.
    PMID: 33139833 DOI: 10.1038/s41598-020-76000-w
    A specific safety concern is the possibility that a dietary supplement could be contaminated with heavy metals. This research was undertaken to investigate the daily exposure levels of heavy metals in dietary supplements available in the UAE and to explore the factors associated with the contamination of dietary supplements with heavy metals. A total of 277 dietary supplement samples were collected from the UAE market and prepared for the analysis of selected heavy metal contamination. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the presence of heavy metals. The average daily intake of cadmium was 0.73 μg [95% CI 0.61-0.85], compared to the acceptable daily intake (ADI) of 6 μg; the daily intake of lead was 0.85 μg [95% CI 0.62-1.07], compared to the acceptable daily intake (ADI) of 20 μg; and the daily intake of arsenic was 0.67 μg [95% CI 0.57-0.78], compared to the acceptable daily intake of 10 μg. Although the dietary supplements available in the UAE have low levels of heavy metal contamination, numerous individuals are consuming a number of different dietary supplements every day and thereby may experience a cumulative level of toxic exposure. Dietary supplements formulations (Categories), dosage forms and country of origin are strong determents of heavy metal contamination in dietary supplements products.
    Matched MeSH terms: Food Contamination/prevention & control*
  20. George DS, Razali Z, Santhirasegaram V, Somasundram C
    J Food Sci, 2015 Feb;80(2):S426-34.
    PMID: 25586772 DOI: 10.1111/1750-3841.12762
    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.
    Matched MeSH terms: Food Contamination/prevention & control
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links