Displaying publications 1 - 20 of 183 in total

Abstract:
Sort:
  1. Ewe JA, Wan-Abdullah WN, Liong MT
    Int J Food Sci Nutr, 2010 Feb;61(1):87-107.
    PMID: 19961357 DOI: 10.3109/09637480903334163
    Ten strains of Lactobacillus were evaluated for their viability in soymilk. Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 and L. gasseri FTDC 8131 displayed higher viability in soymilk and were thus selected to be evaluated for viability and growth characteristics in soymilk supplemented with B-vitamins. Pour plate analyses showed that the supplementation of all B-vitamins studied promoted the growth of lactobacilli to a viable count exceeding 7 log CFU/ml. alpha-Galactosidase specific activity of lactobacilli as determined spectrophotometrically showed an increase upon supplementation of B-vitamins. High-performance liquid chromatography analyses revealed that this led to increased hydrolysis of soy oligosaccharides and subsequently higher utilization of simple sugars. Production of organic acids as determined via high-performance liquid chromatography also showed an increase, accompanied by a decrease in pH of soymilk. Additionally, the supplementation of B-vitamins also promoted the synthesis of riboflavin and folic acid by lactobacilli in soymilk. Our results indicated that B-vitamin-supplemented soymilk is a good proliferation medium for strains of lactobacilli.
    Matched MeSH terms: Food Microbiology*
  2. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Food Microbiology; Functional Food/microbiology
  3. Sarjit A, Dykes GA
    Int J Food Microbiol, 2015 Jun 16;203:63-9.
    PMID: 25791251 DOI: 10.1016/j.ijfoodmicro.2015.02.026
    Little work has been reported on the use of commercial antimicrobials against foodborne pathogens on duck meat. We investigated the effectiveness of trisodium phosphate (TSP) and sodium hypochlorite (SH) as antimicrobial treatments against Campylobacter and Salmonella on duck meat under simulated commercial water chilling conditions. The results were compared to the same treatments on well-studied chicken meat. A six strain Campylobacter or Salmonella cocktail was inoculated (5 ml) at two dilution levels (10(4) and 10(8) cfu/ml) onto 25 g duck or chicken meat with skin and allowed to attach for 10 min. The meat was exposed to three concentrations of pH adjusted TSP (8, 10 and 12% (w/v), pH 11.5) or SH (40, 50 and 60 ppm, pH 5.5) in 30 ml water under simulated spin chiller conditions (4 °C, agitation) for 10 min. In a parallel experiment the meat was placed in the antimicrobial treatments before inoculation and bacterial cocktails were added to the meat after the antimicrobial solution was removed while all other parameters were maintained. Untreated controls and controls using water were included in all experiments. Bacterial numbers were determined on Campylobacter blood-free selective agar and Mueller Hinton agar or xylose deoxycholate agar and tryptone soya agar using the thin agar layer method for Campylobacter and Salmonella, respectively. All TSP concentrations significantly (p<0.05) reduced numbers of Campylobacter (~1.2-6.4 log cfu/cm(2)) and Salmonella (~0.4-6.6 log cfu/cm(2)) on both duck and chicken meat. On duck meat, numbers of Campylobacter were less than the limit of detection at higher concentrations of TSP and numbers of Salmonella were less than the limit of detection at all concentrations of TSP except one. On chicken meat, numbers of Campylobacter and Salmonella were less than the limit of detection only at the lower inoculum level and higher TSP concentrations. By contrast only some of the concentrations of SH significantly (p<0.05) reduced numbers of Campylobacter and Salmonella (~0.2-1.5 log cfu/cm(2)) on both duck and chicken meats. None of the SH treatments resulted in numbers of either pathogen being less than limit of detection. Results indicate that chicken meat has the ability to effectively protect Campylobacter and Salmonella against the impact of trisodium phosphate and sodium hypochlorite while duck meat does not. This study suggests that trisodium phosphate has a strong potential for application in a commercial poultry processing to reduce Campylobacter and Salmonella specifically on duck meat.
    Matched MeSH terms: Food Microbiology/methods*
  4. Nadzirah Sh, Azizah N, Hashim U, Gopinath SC, Kashif M
    PLoS One, 2015;10(10):e0139766.
    PMID: 26445455 DOI: 10.1371/journal.pone.0139766
    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
    Matched MeSH terms: Food Microbiology
  5. Chai LC, Robin T, Ragavan UM, Gunsalam JW, Bakar FA, Ghazali FM, et al.
    Int J Food Microbiol, 2007 Jun 10;117(1):106-11.
    PMID: 17399832
    The main aim of this study was to combine the techniques of most probable number (MPN) and polymerase chain reaction (PCR) for quantifying the prevalence and numbers of Campylobacter spp. in ulam, a popular Malaysian salad dish, from a traditional wet market and two modern supermarkets in Selangor, Malaysia. A total of 309 samples of raw vegetables which are used in ulam were examined in the study. The prevalences of campylobacters in raw vegetables were, for supermarket I, Campylobacter spp., 51.9%; Campylobacter jejuni, 40.7%; and Campylobacter coli, 35.2%: for supermarket II, Campylobacter spp., 67.7%; C. jejuni, 67.7%; and C. coli, 65.7%: and for the wet market, Campylobacter spp., 29.4%; C. jejuni, 25.5%; and C. coli, 22.6%. In addition Campylobacter fetus was detected in 1.9% of raw vegetables from supermarket I. The maximum numbers of Campylobacter spp. in raw vegetables from supermarkets and the wet market were >2400 and 460 MPN/g, respectively.
    Matched MeSH terms: Food Microbiology
  6. Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, et al.
    Food Microbiol, 2019 Jun;79:96-115.
    PMID: 30621881 DOI: 10.1016/j.fm.2018.11.005
    Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
    Matched MeSH terms: Food Microbiology/instrumentation; Food Microbiology/standards*; Food Microbiology/trends*
  7. Wong LP, Alias H, Choy SH, Goh XT, Lee SC, Lim YAL, et al.
    Zoonoses Public Health, 2020 05;67(3):263-270.
    PMID: 31927794 DOI: 10.1111/zph.12681
    Malaysia is a non-endemic country for hepatitis E virus (HEV) infection. However, seroprevalence as high as 50% among samples of aboriginal people were reported over two decades ago. A total of 207 samples collected from seven aboriginal villages in rural settlements across two states in Malaysia were analysed for anti-HEV IgG and IgM by an enzyme-linked immunoassay. Following the detection of anti-HEV seroprevalence, we organized health outreach to inform and educate the community. Qualitative interviews were conducted with individuals tested positive for anti-HEV antibodies. Data derived from interviews and observations were used to investigate possible lifestyle behaviours associated with HEV infection. Anti-HEV IgG was detected in six samples (5.9%) from the village of Dusun Kubur. Qualitative inquiry and observation study revealed poor dietary and household hygiene, contaminated food and water, contact with animal faeces, unsanitary and domestic waste disposal, and wildlife reservoirs could be the contributing factors for transmission and acquisition of HEV infection. Investigation during health outreach is important to provide insights for future empirical research and implementation for improvement of lifestyle behaviours among the aborigines. Managing the risk of HEV infection in the aborigines may reduce the risk of HEV transmission to the local communities.
    Matched MeSH terms: Food Microbiology
  8. Sheikh-Ali SI, Ahmad A, Mohd-Setapar SH, Zakaria ZA, Abdul-Talib N, Khamis AK, et al.
    J Microbiol, 2014 Oct;52(10):807-18.
    PMID: 25269603 DOI: 10.1007/s12275-014-4294-7
    The contamination of food and feed by Aspergillus has become a global issue with a significant worldwide economic impact. The growth of Aspergillus is unfavourable to the development of food and feed industries, where the problems happen mostly due to the presence of mycotoxins, which is a toxic metabolite secreted by most Aspergillus groups. Moreover, fungi can produce spores that cause diseases, such as allergies and asthma, especially to human beings. High temperature, high moisture, retarded crops, and poor food storage conditions encourage the growth of mold, as well as the development of mycotoxins. A variety of chemical, biological, and physical strategies have been developed to control the production of mycotoxins. A biological approach, using a mixed culture comprised of Saccharomyces cerevisiae and Lactobacillus rhamnosus resulted in the inhibition of the growth of fungi when inoculated into fermented food. The results reveal that the mixed culture has a higher potential (37.08%) to inhibit the growth of Aspergillus flavus (producer of Aflatoxin) compared to either single culture, L. rhamnosus NRRL B-442 and S. cerevisiae, which inhibit the growth by 63.07% and 64.24%, respectively.
    Matched MeSH terms: Food Microbiology*
  9. Lim YS, Jegathesan M, Koay AS, Kang SH
    Med J Malaysia, 1983 Mar;38(1):27-30.
    PMID: 6633330
    Enterotoxin production by strains of Staphylococcus aureus isolated from foods unconnected with outbreaks offood poisoning was investigated. Twenty-three percent of 217 strains examined produced enterotoxins A, B, C, D or E. Enterotoxin C was found to occur most frequently. Enterotoxin A was not detected alone from any of the strains examined, but occurred together with other enterotoxins. The overall number of strains isolated from raw foods which produced one or more enterotoxins was higher than that for cooked foods. Antibiotic sensitivities were unrelated to enterotoxin production and no correlation could be found between methicillin resistance and enterotoxigenicity.
    Matched MeSH terms: Food Microbiology*
  10. Chapman SJ
    Med J Malaysia, 1980 Sep;35(1):7-8.
    PMID: 7254003
    A survey of lettuce sold in Penang markets showed them to be heavily contaminated with faecal coliforms and nearly half the samples were positive for Salmonella or Shigella. The use of night soil on these vegetables is a likely cause of gastroenteritis.
    Matched MeSH terms: Food Microbiology*
  11. Lim YS, Khor SY, Jegathesan M, Kang SH
    Med J Malaysia, 1984 Sep;39(3):220-4.
    PMID: 6544923
    Between June 1977 and May 1982, 2,291 samples of raw, cooked and dried foods were examined for the presence of Salmonella. Of these samples, 43 were positive, isolations being made from raw foods (4.8%) and cooked foods (0.4%) but not from dried foods. 14 Salmonella seratypes were isolated, Salmonella anatum being the most predominant. The significance of these isolations is discussed and the need for consumer education to reduce the incidence of human salmonellosis is emphasised.
    Matched MeSH terms: Food Microbiology*
  12. Björkroth KJ, Schillinger U, Geisen R, Weiss N, Hoste B, Holzapfel WH, et al.
    Int J Syst Evol Microbiol, 2002 Jan;52(Pt 1):141-148.
    PMID: 11837296 DOI: 10.1099/00207713-52-1-141
    A taxonomic study was conducted to clarify the relationships of two bacterial populations belonging to the genus Weissella. A total of 39 strains originating mainly from Malaysian foods (22 strains) and clinical samples from humans (9 strains) and animals (6 strains) were analysed using a polyphasic taxonomic approach. The methods included classical phenotyping, whole-cell protein electrophoresis, 16S and 23S rDNA RFLP (ribotyping), determination of 16S rDNA sequence homologies and DNA-DNA reassociation levels. Based on the results, the strains were considered to represent two different species, Weissella confusa and a novel Weissella species, for which the name Weissella cibaria sp. nov. is proposed. Weisella confusa possessed the highest 16S rDNA sequence similarity to Weisella cibaria, but the DNA-DNA reassociation experiment showed hybridization levels below 49% between the strains studied. The numerical analyses of Weisella confusa and Weisella cibaria strains did not reveal any specific clustering with respect to the origin of the strains. Based on whole-cell protein electrophoresis, and ClaI and HindIII ribotyping patterns, food and clinical isolates were randomly located in the two species-specific clusters obtained.
    Matched MeSH terms: Food Microbiology*
  13. Abeer MM, Amin MC, Lazim AM, Pandey M, Martin C
    Carbohydr Polym, 2014 Sep 22;110:505-12.
    PMID: 24906785 DOI: 10.1016/j.carbpol.2014.04.052
    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.
    Matched MeSH terms: Food Microbiology
  14. Wan-Hamat H, Lani MN, Hamzah Y, Alias R, Hassan Z, Mahat NA
    Trop Biomed, 2020 Mar 01;37(1):103-115.
    PMID: 33612722
    The microbiological quality of thirty ready-to-eat (RTE) keropok lekor (a sausage shape Malaysian fish product) was evaluated in comparison to microbiological guidelines for ready to eat foods. The two E. coli isolates were subjected to DNA sequencing, identified and tested for their resistance towards fifteen different antibiotics. The survival and growth of the isolated E. coli strains inoculated in keropok lekor at atmospheric air and vacuum packaging were also evaluated. Results revealed that four samples (13.33%) contained Enterobacteriaceae counts that exceeded the recommended allowable counts of 4.0 log10 CFU/g. Unsatisfactory level of coliforms (< 1.7 log10 CFU/g) was also observed in ten of the samples; two of which contained E. coli (2.1 ± 0.17 and 3.7 ± 0.02 log10 CFU/g), suggesting of poor hygiene and sanitation practices. While the 'Possible E10' E. coli strain was observably resistant towards Nalidixic acid (30µg) alone, B10 E. coli isolate was worryingly resistant towards Ampicillin (10µg), Ceftazidime (30µg), Ciprofloxacin (5µg), Ceftriaxone (30µg), Nalidixic acid (30µg) and Tetracycline (30µg). This study also revealed that the growth and survival of the 'Possible E10' and B10 E. coli strains were not significantly affected by vacuum packaging when stored at both 4°C and 28°C. Therefore, intervention programmes to alert and educate smallmedium enterprisers (SMEs) of keropok lekor producers on food safety as well as potential health risks that can be associated due to inappropriate handling procedures of such product, merits consideration.
    Matched MeSH terms: Food Microbiology
  15. Liew WS, Leisner JJ, Rusul G, Radu S, Rassip A
    Int J Food Microbiol, 1998 Jul 21;42(3):167-73.
    PMID: 9728687
    The effect of heat-treatment on the internal temperature of raw cockles (Anadara granosa) and survival of their intrinsic flora of Vibrio spp. as well as of inoculated V. cholerae 0139 was examined. The cockles were purchased from markets in Malaysia and had an average weight including shells of 8.90+/-2.45 g. In one experiment heatpenetration of individual cockles was examined. Cockles weighing < 8 g (including shell) exhibited maximum internal temperatures of between 50 and 75 degrees C when heated in water at 99 degrees C for 10 s and 71-93 degrees C when heated for 30 s. Cockles weighing > 12 g exhibited maximum internal temperatures between 42 and 58 degrees C when heated in water at 99 degrees C for 10 s and 56-69 degrees C when heated for 30 s. In another experiment, heat-treatment of 10 cockles treated as a group at 99 degrees C for 10 or 30 s resulted in reduction of levels of intrinsic Vibrio spp. (enumerated directly on thiosulphate-citrate-bile salt sucrose agar; TCBS) from 5.73 to 3.15 log cfu g(-1) or below 1 log cfu g(-1), respectively. The levels of Vibrio spp. after heat-treatment decreased with an increase in numbers of cockles grouped together during treatment. In a third experiment V. cholerae 0139 was inoculated into cockles and subjected to heat-treatment at 99 degrees C for 0, 10, 15, 20, 25 or 30 s. The levels of Vibrio spp. in uninoculated, non-heat-treated cockles was 4.89 log cfu g(-1) on TCBS, and the predominant species were V. parahaemolyticus and V. alginolyticus. V. cholerae 0139 inoculated into cockles with an average weight of 13.5+/-1.90 g (including shell) decreased for samples examined immediately after heat-treatment from 6 log cfu g(-1) initially to 3.5 log cfu g(-1) after 25 s and < 1 log cfu g(-1) (TCBS) after 30 s of heat-treatment. The most probable number method by enrichment in alkaline peptone water gave in general within 1 log unit higher counts than TCBS direct enumeration. TCBS direct enumeration and MPN counts were up to 2.38 or 1.30 log units higher, respectively, for samples heat-treated for 20 s or longer and stored for 6 h at 30 degrees C before examination, than for samples heat-treated for same periods of time and examined immediately. This study shows that a mild heat-treatment of cockles for up to 25 s is inadequate to ensure a large reduction in numbers of Vibrio spp., including V. cholerae 0139.
    Matched MeSH terms: Food Microbiology*
  16. Leong YK, Xui OC, Chia OK
    J Food Prot, 2008 May;71(5):1035-7.
    PMID: 18522042
    Survival of rotavirus in fresh fruit juices of papaya (Caraca papaya L.), honeydew melon (Cucumis melo L.), and pineapple (Ananas comosus [L.] Merr.) was studied. Clarified juices were prepared from pulps of ripe fruits and sterilized by ultrafiltration. One milliliter of juice from each fruit was inoculated with 20 microl of 1 x 10(6) PFU of SA11 rotavirus and sampled immediately (0-h exposure) and 1 and 3 h later at 28 degrees C. Mean viral titers in juices of papaya (pH 5.1) and honeydew melon (pH 6.3) at 1 and 3 h were not significantly different from titers at 0-h exposure. Mean viral titers in juices from pineapples with ripening color indices of 3 (pH 3.6) and 6 (pH 3.7) at 1-h exposure (color index 3: 4.0 +/- 1.7 x 10(4); color index 6: 2.3 +/- 0.3 x 10(5)) and 3-h exposure (color index 3: 1.1 +/- 0.4 x 10(4); color index 6:1.3 +/- 0.6 x 10(5)) were significantly lower than titers at 0-h exposure (color index 3: 5.7 +/- 2.9 x 10(5); color index 6: 7.4 +/- 1.3 x 10(5)). Virus titers in pineapple juices of color index 3 were significantly lower than titers of the virus in juices of index 6. In cell culture medium (pH 7.4), SA11 titer remained stable over 3 h at 28 degrees C. However, at pH 3.6, the virus titer was reduced to a level not significantly different from that of the virus in pineapple juice of color index 6 (pH 3.7). In conclusion, papaya and honeydew melon juices, in contrast to pineapple juice, have the potential to transmit rotavirus. Inactivation of SA11 virus in pineapple juice can be possibly attributed to low pH and constituent(s) in the juice.
    Matched MeSH terms: Food Microbiology
  17. Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP
    Food Sci Technol Int, 2018 Dec;24(8):688-698.
    PMID: 30044138 DOI: 10.1177/1082013218789224
    Antimicrobial coated films were produced by an innovative method that allowed surface modification of commercial low-density polyethylene films so that well-defined antimicrobial surfaces could be prepared. A Pluronic™ surfactant and a polystyrene-polyethylene oxide block copolymer were employed to develop modified materials. The Pluronic™ surfactant provided a more readily functionalised film surface, while block copolymer provided a reactive interface which was important in providing a route to silver nanoparticles that were well adhered to the surface. Antimicrobial films containing silver were manufactured using a spray coater and the amount of silver used for coating purposes varied by the concentration of the silver precursor (silver nitrate) or the number of silver coatings applied. Potential antimicrobial activity of manufactured silver-coated low-density polyethylene films was tested against Pseudomonas fluorescens, Staphylococcus aureus and microflora isolated from raw chicken. The microbiological and physicochemical quality of chicken breast fillets wrapped with silver-coated low-density polyethylene films followed by vacuum skin packaging was also assessed during storage. Antimicrobial activity of developed silver-coated low-density polyethylene films was dependent ( p food applications.
    Matched MeSH terms: Food Microbiology*
  18. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Food Microbiology
  19. Mohammed Shafit H, Williams SK
    Poult Sci, 2010 Mar;89(3):594-602.
    PMID: 20181879 DOI: 10.3382/ps.2009-00412
    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.
    Matched MeSH terms: Food Microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links