Displaying publications 1 - 20 of 76 in total

  1. Sinclair M, Idrus Z, Nhiem DV, Katawatin S, Todd B, Burn GL, et al.
    Animals (Basel), 2019 Jul 04;9(7).
    PMID: 31277448 DOI: 10.3390/ani9070416
    Understanding what might motivate livestock stakeholders to improve animal welfare is useful information when developing initiatives that benefit from stakeholder engagement. This study was designed to assess the strength of motivating drivers in the development of attitudes to animal welfare, and the factors that impacted their ability to improve animal welfare. During a series of qualitative focus group sessions with livestock leaders across the same countries (Malaysia, China, Vietnam and Thailand), the current study presented livestock leaders (n = 139) with the most significant results in their country, and collected data pertaining to the meaning and applicability of these results. This data was then subject to thematic analysis to identify salient and repeated motivating factors and meanings. This process revealed a complex picture of relationships between motivators and the contexts that drive them. Figures are presented to begin illustrating these relationships. Some strong motivators were uncovered that were previously rated low in the survey (i.e., financial benefit) or not included at all (e.g., food safety). This paper also presents the opportunity to better understand the strength and relationship of extrinsic and intrinsic motivational forces behind animal welfare improvement.
    Matched MeSH terms: Food Safety
  2. Zyoud S, Shalabi J, Imran K, Ayaseh L, Radwany N, Salameh R, et al.
    BMC Public Health, 2019 May 16;19(1):586.
    PMID: 31096949 DOI: 10.1186/s12889-019-6955-2
    BACKGROUND: Food serves as a vehicle for many pathogenic and toxigenic agents that cause food-borne diseases. Knowledge, attitude, and practices are key factors in reducing the incidence of food-borne diseases in food service areas. The main objective of this study was to evaluate knowledge, attitude, and practices related to food poisoning among parents of children in Nablus, Palestine.

    METHODS: A cross-sectional study was conducted in primary healthcare centers in Nablus district from May to July 2015. Data were collected using structured questionnaire interviews with parents to collect information on food safety knowledge, attitudes, and practices, alongside sociodemographic characteristics.

    RESULTS: Four-hundred and twelve parents were interviewed, 92.7% were mothers. The median knowledge score was 12.0 with an interquartile range (IQR) of 11.0-14.0. The median attitude score was 11.0 with IQR of 10.0-13.0, while the median practice score was 18.0 with IQR of 16.0-19.0. Significant modest positive correlations were found between respondents' knowledge and attitude scores regarding food poisoning (r = 0.24, p food poisoning (r = 0.23, p food poisoning (r = 0.30, p food poisoning (p food poisoning prevention are associated with each other and are affected by a complex interplay between socio-economic variables. The study highlights the need for health education programmes and general awareness campaigns that intend not only to enhance knowledge but also promote parents to practice food safety measures strictly and further strengthen their awareness level.

    Matched MeSH terms: Food Safety
  3. Chong, Lee Kim
    Animal species identification is one of the important fields in forensic science. Unlike human forensics which makes use of DNA fingerprinting techniques to identify individuals of the same species - humans, animal forensic species identification is much more complicated as it involves the ability to identify and distinguish between hundreds to thousands of species when the material evidence is only a trace of animal tissue without the presence of any visual physical morphology. It is even more difficult when the specimen is an unknown and no reference material is available. Animal species identification is not only important for the prevention of wildlife crimes for the purpose of wildlife protection and conservation but it is also becoming more and more significant in food safety issues especially for the meat industry. Owing to the demand and the necessity of providing such services for regulation and enforcement in the context of environmental protection, food safety and biosafety, the Department of Chemistry (DOC)
    Malaysia has initiated the use of DNA techniques employing the most widely used genetic markers as part of its scientific solution for animal species identification.
    Matched MeSH terms: Food Safety
  4. Zhang Y, Zhou L, Zhang C, Show PL, Du A, Fu J, et al.
    Carbohydr Polym, 2020 Nov 01;247:116670.
    PMID: 32829798 DOI: 10.1016/j.carbpol.2020.116670
    With the growing interest in food safety and in environmental protection, it is more attractive to develop novel biodegradable packaging films. In this regard, one new blending film was prepared with curdlan (CD)/polyvinyl alcohol (PVA)/thyme essential oil. Our results demonstrated that the mechanical properties of the blending film were the best when the ratio of the CD and PVA was 4:1. Further, the barrier properties of the film were optimized by incorporating with thyme essential oil. It was proved that not only water vapor permeability was lower, but also the elongation at break was improved, when 2% (w/w) thyme essential oil used. The potential interactions of the film matrix were analyzed by FTIR, XRD and Cryo-scanning electron microscopy. Importantly, both the antioxidant activity and antibacterial activity were improved. Finally, the blending film was employed for the preservation of chilled meat, while the shelf life was extended up to 10 days.
    Matched MeSH terms: Food Safety
  5. Afsah-Hejri L, Jinap S, Hajeb P, Radu S, Shakibazadeh S
    Compr Rev Food Sci Food Saf, 2013 Nov;12(6):629-651.
    PMID: 33412719 DOI: 10.1111/1541-4337.12029
     Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T-2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin-producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat-based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.
    Matched MeSH terms: Food Safety
  6. Bhat R, Rai RV, Karim AA
    Compr Rev Food Sci Food Saf, 2010 Jan;9(1):57-81.
    PMID: 33467806 DOI: 10.1111/j.1541-4337.2009.00094.x
      Disease outbreaks due to the consumption of contaminated food and feedstuff are a recurring problem worldwide. The major factor contributing to contamination are microorganisms, especially fungi, which produce low-molecular-weight compounds as secondary metabolites, with confirmed toxic properties referred to as mycotoxins. Several mycotoxins reported to date are cosmopolitan in distribution and incur severe health-associated risks (including cancer and neurological disorders). Hence, creating awareness among consumers, as well as developing new methods for detection and inactivation is of great importance for food safety. In this review, the focus is on the occurrence of various types of mycotoxins in food and feed associated with risks to humans and livestock, as well as legislation put forth by various authorities, and on presently practiced detoxification methods. Brief descriptions on recent developments in mycotoxin detection methodology are also inlcuded. This review is meant to be informative not only for health-conscious consumers but also for experts in the field to pave the way for future research to fill the existing gaps in our knowledge with regard to mycotoxins and food safety.
    Matched MeSH terms: Food Safety
  7. Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP
    Compr Rev Food Sci Food Saf, 2020 03;19(2):643-669.
    PMID: 33325175 DOI: 10.1111/1541-4337.12541
    In this review, we present the current information on development and applications of biological control against phytopathogenic organisms as well as mycotoxigenic fungi in Malaysia as part of the integrated pest management (IPM) programs in a collective effort to achieve food security. Although the biological control of phytopathogenic organisms of economically important crops is well established and widely practiced in Malaysia with considerable success, the same cannot be said for mycotoxigenic fungi. This is surprising because the year round hot and humid Malaysian tropical climate is very conducive for the colonization of mycotoxigenic fungi and the potential contamination with mycotoxins. This suggests that less focus has been made on the control of mycotoxigenic species in the genera Aspergillus, Fusarium, and Penicillium in Malaysia, despite the food security and health implications of exposure to the mycotoxins produced by these species. At present, there is limited research in Malaysia related to biological control of the key mycotoxins, especially aflatoxins, Fusarium-related mycotoxins, and ochratoxin A, in key food and feed chains. The expected threats of climate change, its impacts on both plant physiology and the proliferation of mycotoxigenic fungi, and the contamination of food and feed commodities with mycotoxins, including the discovery of masked mycotoxins, will pose significant new global challenges that will impact on mycotoxin management strategies in food and feed crops worldwide. Future research, especially in Malaysia, should urgently focus on these challenges to develop IPM strategies that include biological control for minimizing mycotoxins in economically important food and feed chains for the benefit of ensuring food safety and food security under climate change scenarios.
    Matched MeSH terms: Food Safety
  8. Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2016 Apr 14.
    PMID: 27075621 DOI: 10.3109/07388551.2016.1164664
    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
    Matched MeSH terms: Food Safety
  9. Premarathne JMKJK, Satharasinghe DA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, et al.
    Crit Rev Food Sci Nutr, 2017 Dec 12;57(18):3971-3986.
    PMID: 28001082 DOI: 10.1080/10408398.2016.1266297
    Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
    Matched MeSH terms: Food Safety
  10. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
    Matched MeSH terms: Food Safety*
  11. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
    Matched MeSH terms: Food Safety
  12. Ong HT, Samsudin H, Soto-Valdez H
    PMID: 33081493 DOI: 10.1080/10408398.2020.1830747
    Plastic packaging materials (PPMs) protect food from contamination, maintain quality, and ease transportation and distribution. Additives included during the manufacturing and processing of PPMs improve flexibility, durability, barrier properties, and sometimes aid the processing itself. During processing, these additives, even the monomers used to produce the plastics, can produce side products or breakdown products as a result of degradation and various chemical reactions. These starting substances and reaction products include 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), phthalates/phthalic acid esters, alkylphenols, and bis(2-ethylhexyl) adipate, which are considered endocrine-disrupting chemicals (EDCs) that may interfere with the human endocrine system and produce adverse reproductive, neurological, developmental, and immune effects. When in contact with food, EDCs can migrate into food if conditions are appropriate, thereby possibly jeopardizing food safety. Chemical risk assessment and regulatory control were developed to reduce human exposure to harmful migrated EDCs. This article gives an overview of the migration of EDCs from PPMs and control measures to reduce the risk of adverse impacts on human health.
    Matched MeSH terms: Food Safety
  13. Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR
    PMID: 33146031 DOI: 10.1080/10408398.2020.1841728
    Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus are the most significant aquatic pathogens of the genera Vibrio, account for most Vibrio-associated outbreaks worldwide. Rapid identification of these pathogens is of great importance for disease surveillance, outbreak investigations and food safety maintenance. Traditional culture dependent methods are time-consuming and labor-intensive whereas culture-independent polymerase chain reaction (PCR) based assays are reliable, consistent, rapid and reproducible. This review covers the recent development and applications of PCR based techniques, which have accelerated advances in the analysis of nucleic acids to identify three major pathogenic vibrios. Emphasis has been given to analytical approaches as well as advantages and limits of the available methods. Overall, this review article possesses the substantial merit to be used as a reference guide for the researchers to develop improved PCR based techniques for the differential detection and quantification of Vibrio species.
    Matched MeSH terms: Food Safety
  14. Mwungu CM, Shikuku KM, Atibo C, Mwongera C
    Data Brief, 2019 Apr;23:103818.
    PMID: 31372462 DOI: 10.1016/j.dib.2019.103818
    Climate change, degradation of natural resources, conflict or civil war, diseases and poverty are among the key threats that impact agriculture, human nutrition, food security and food safety among rural households in developing countries. Sustainability of food systems and livelihoods will thus crucially depend on not only the ability to accommodate or recover from these threats but also to tap into opportunities for strengthening long-term capabilities. One approach to enhancing resilience to enhance food security and nutrition is building an evidence base to better understand the various types of smallholders, threats to agriculture production and the associated risks to food security and nutrition and household food preferences. Unfortunately, such data in many African countries is still unavailable or has not been shared publicly. In this paper, we describe data that were collected in Nwoya district, Northern Uganda in December 2017. These data can be used to assess the relationship between resilience of farm households to climatic risks and their food and nutrition security.
    Matched MeSH terms: Food Safety
  15. Ma NL, Peng W, Soon CF, Noor Hassim MF, Misbah S, Rahmat Z, et al.
    Environ Res, 2021 Feb;193:110405.
    PMID: 33130165 DOI: 10.1016/j.envres.2020.110405
    The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
    Matched MeSH terms: Food Safety
  16. Tirmizi, L.I.T., Brand, H., Son, R., New, C.Y.
    Food Research, 2018;2(3):247-257.
    According to the World Health Organisation (WHO), globally 600 million people suffer
    from food-borne diseases (FBD), and 420,000 people die as a result. The European Food
    Safety Authority (EFSA) has stated that FBD are linked to the food industry, with the
    most common means of transmission being due to poor food handling and hygiene by
    food handlers working in the food industry. The aim of this research was to investigate the
    effectiveness of mandatory food handler training programmes (FHTP) to prevent FBD in
    Malaysia and Ireland. To do this, the FHTP existing in Malaysia and Ireland were
    analysed, in addition to the legislation they fall under in each respective country.
    Effectiveness was determined by investigating the level of food safety knowledge (FSK)
    and food safety practices (FSP) of food handlers in Malaysia and Ireland. A systematic
    literature review (SLR) and a narrative literature review (NLR) were conducted for this
    research. The SLR was based on the PRISMA diagram, using the Confidence in the
    Evidence from Reviews of Qualitative research (CERQual) approach to evaluate the
    studies used for this research. A total of 8 Malaysian studies and 1 Irish study were used to
    determine the level of FSK and FSP of food handlers in each respective country, to
    examine the effectiveness of FHTP. The results of the studies used for this research have
    depicted overall good FSP and FSK of food handlers in Malaysia and Ireland; yet trends
    continue to show that food handlers are one of the biggest contributors to FBD,
    demonstrating that FHTP are not effective in preventing FBD. The findings from this
    research highlights that although these trainings can be an effective tool to prevent FBD, if
    they are not executed correctly, food handlers will continue to contribute to FBD.
    Matched MeSH terms: Food Safety
  17. Chik Z, Haron DE, Ahmad ED, Taha H, Mustafa AM
    PMID: 21607892 DOI: 10.1080/19440049.2011.576401
    Migration of melamine has been determined for 41 types of retail melamine-ware products in Malaysia. This study was initiated by the Ministry of Health, Malaysia, in the midst of public anxiety on the possibility of melamine leaching into foods that come into contact with the melamine-ware. Thus, the objective of this study was to investigate the level of melamine migration in melamine utensils available on the market. Samples of melamine tableware, including cups and plates, forks and spoons, tumblers, bowls, etc., were collected from various retail outlets. Following the test guidelines for melamine migration set by the European Committee for Standardisation (CEN 2004) with some modifications, the samples were exposed to two types of food simulants (3% acetic acid and distilled water) at three test conditions (25°C (room temperature), 70 and 100°C) for 30 min. Melamine analysis was carried out using LC-MS/MS with a HILIC column and mobile phase consisting of ammonium acetate/formic acid (0.05%) in water and ammonium acetate/formic acid (0.05%) in acetonitrile (95 : 5, v/v). The limit of quantification (LOQ) was 5 ng/ml. Melamine migration was detected from all samples. For the articles tested with distilled water, melamine migration were [median (interquartile range)] 22.2 (32.6), 49.3 (50.9), 84.9 (89.9) ng/ml at room temperature (25°C), 70 and 100°C, respectively. In 3% acetic acid, melamine migration was 31.5 (35.7), 81.5 (76.2), 122.0 (126.7) ng/ml at room temperature (25°C), 70 and 100°C, respectively. This study suggests that excessive heat and acidity may directly affect melamine migration from melamine-ware products. However the results showed that melamine migration in the tested items were well below the specific migration limit (SML) of 30 mg/kg (30,000 ng/ml) set out in European Commission Directive 2002/72/EC.
    Matched MeSH terms: Food Safety
  18. Rahmani A, Selamat J, Soleimany F
    PMID: 21598138 DOI: 10.1080/19440049.2011.576436
    A reversed-phase HPLC optimization strategy is presented for investigating the separation and retention behavior of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone, simultaneously. A fractional factorial design (FFD) was used to screen the significance effect of seven independent variables on chromatographic responses. The independent variables used were: (X1) column oven temperature (20-40°C), (X2) flow rate (0.8-1.2 ml/min), (X3) acid concentration in aqueous phase (0-2%), (X4) organic solvent percentage at the beginning (40-50%), and (X5) at the end (50-60%) of the gradient mobile phase, as well as (X6) ratio of methanol/acetonitrile at the beginning (1-4) and (X7) at the end (0-1) of gradient mobile phase. Responses of chromatographic analysis were resolution of mycotoxin peaks and HPLC run time. A central composite design (CCD) using response surface methodology (RSM) was then carried out for optimization of the most significant factors by multiple regression models for response variables. The proposed optimal method using 40°C oven temperature, 1 ml/min flow rate, 0.1% acetic acid concentration in aqueous phase, 41% organic phase (beginning), 60% organic phase (end), 1.92 ratio of methanol to acetonitrile (beginning) and 0.2 ratio (end) for X1-X7, respectively, showed good prediction ability between the experimental data and predictive values throughout the studied parameter space. Finally, the optimized method was validated by measuring the linearity, sensitivity, accuracy and precision parameters, and has been applied successfully to the analysis of spiked cereal samples.
    Matched MeSH terms: Food Safety
  19. Fang Wong S, Mei Khor S
    Food Chem, 2021 Apr 20;357:129801.
    PMID: 33930694 DOI: 10.1016/j.foodchem.2021.129801
    Foodborne amides, specifically acrylamide, are vitally important for food safety and security, as they are the most common food toxicants and suspected human carcinogens. A facile and novel differential-based colorimetric nanobiosensor array composed of three surface-bioengineered gold nanoparticles (AuNPs) was developed for the rapid detection, differentiation, and quantification of acrylamide and six analogues. Diverse cross-reactive receptors demonstrated differential binding affinities toward target analytes, resulting in distinctive AuNP aggregation behaviors and distinguishable response patterns. The sensor array, integrated with principal component analysis and hierarchical cluster analysis, accurately discriminated foodborne amides based on their amine subgroups, International Agency for Research on Cancer (IARC) carcinogen classifications, and food additive types, even at ultra-low concentrations (500 pM). Additionally, the sensor array successfully differentiated non-targeted analytes by sweetener and food ingredients types with 100% correct classification. Partial least squares regression outcomes exhibited high correlation coefficients (R2 > 0.95). Thus, the sensor array has practical potential for food safety monitoring in the food and beverage industries.
    Matched MeSH terms: Food Safety
  20. Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, et al.
    Food Microbiol., 2019 Jun;79:96-115.
    PMID: 30621881 DOI: 10.1016/j.fm.2018.11.005
    Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
    Matched MeSH terms: Food Safety*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links