Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Fang Wong S, Mei Khor S
    Food Chem, 2021 Apr 20;357:129801.
    PMID: 33930694 DOI: 10.1016/j.foodchem.2021.129801
    Foodborne amides, specifically acrylamide, are vitally important for food safety and security, as they are the most common food toxicants and suspected human carcinogens. A facile and novel differential-based colorimetric nanobiosensor array composed of three surface-bioengineered gold nanoparticles (AuNPs) was developed for the rapid detection, differentiation, and quantification of acrylamide and six analogues. Diverse cross-reactive receptors demonstrated differential binding affinities toward target analytes, resulting in distinctive AuNP aggregation behaviors and distinguishable response patterns. The sensor array, integrated with principal component analysis and hierarchical cluster analysis, accurately discriminated foodborne amides based on their amine subgroups, International Agency for Research on Cancer (IARC) carcinogen classifications, and food additive types, even at ultra-low concentrations (500 pM). Additionally, the sensor array successfully differentiated non-targeted analytes by sweetener and food ingredients types with 100% correct classification. Partial least squares regression outcomes exhibited high correlation coefficients (R2 > 0.95). Thus, the sensor array has practical potential for food safety monitoring in the food and beverage industries.
    Matched MeSH terms: Food Safety
  2. Ma NL, Peng W, Soon CF, Noor Hassim MF, Misbah S, Rahmat Z, et al.
    Environ Res, 2021 Feb;193:110405.
    PMID: 33130165 DOI: 10.1016/j.envres.2020.110405
    The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
    Matched MeSH terms: Food Safety
  3. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
    Matched MeSH terms: Food Safety
  4. Usman S, Abdull Razis AF, Shaari K, Amal MNA, Saad MZ, Mat Isa N, et al.
    PMID: 33371479 DOI: 10.3390/ijerph17249591
    Technological advances, coupled with increasing demands by consumers, have led to a drastic increase in plastic production. After serving their purposes, these plastics reach our water bodies as their destination and become ingested by aquatic organisms. This ubiquitous phenomenon has exposed humans to microplastics mostly through the consumption of sea food. This has led the World Health Organization (WHO) to make an urgent call for the assessment of environmental pollution due to microplastics and its effect on human health. This review summarizes studies between 1999 and 2020 in relation to microplastics in aquatic ecosystems and human food products, their potential toxic effects as elicited in animal studies, and policies on their use and disposal. There is a paucity of information on the toxicity mechanisms of microplastics in animal studies, and despite their documented presence in food products, no policy has been in place so far, to monitor and regulates microplastics in commercial foods meant for human consumption. Although there are policies and regulations with respect to plastics, these are only in a few countries and in most instances are not fully implemented due to socioeconomic reasons, so they do not address the problem across the entire life cycle of plastics from production to disposal. More animal research to elucidate pathways and early biomarkers of microplastic toxicity that can easily be detected in humans is needed. This is to create awareness and influence policies that will address this neglected threat to food safety and security.
    Matched MeSH terms: Food Safety
  5. Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR
    PMID: 33146031 DOI: 10.1080/10408398.2020.1841728
    Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus are the most significant aquatic pathogens of the genera Vibrio, account for most Vibrio-associated outbreaks worldwide. Rapid identification of these pathogens is of great importance for disease surveillance, outbreak investigations and food safety maintenance. Traditional culture dependent methods are time-consuming and labor-intensive whereas culture-independent polymerase chain reaction (PCR) based assays are reliable, consistent, rapid and reproducible. This review covers the recent development and applications of PCR based techniques, which have accelerated advances in the analysis of nucleic acids to identify three major pathogenic vibrios. Emphasis has been given to analytical approaches as well as advantages and limits of the available methods. Overall, this review article possesses the substantial merit to be used as a reference guide for the researchers to develop improved PCR based techniques for the differential detection and quantification of Vibrio species.
    Matched MeSH terms: Food Safety
  6. Jairoun AA, Shahwan M, Zyoud SH
    Sci Rep, 2020 11 02;10(1):18824.
    PMID: 33139833 DOI: 10.1038/s41598-020-76000-w
    A specific safety concern is the possibility that a dietary supplement could be contaminated with heavy metals. This research was undertaken to investigate the daily exposure levels of heavy metals in dietary supplements available in the UAE and to explore the factors associated with the contamination of dietary supplements with heavy metals. A total of 277 dietary supplement samples were collected from the UAE market and prepared for the analysis of selected heavy metal contamination. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the presence of heavy metals. The average daily intake of cadmium was 0.73 μg [95% CI 0.61-0.85], compared to the acceptable daily intake (ADI) of 6 μg; the daily intake of lead was 0.85 μg [95% CI 0.62-1.07], compared to the acceptable daily intake (ADI) of 20 μg; and the daily intake of arsenic was 0.67 μg [95% CI 0.57-0.78], compared to the acceptable daily intake of 10 μg. Although the dietary supplements available in the UAE have low levels of heavy metal contamination, numerous individuals are consuming a number of different dietary supplements every day and thereby may experience a cumulative level of toxic exposure. Dietary supplements formulations (Categories), dosage forms and country of origin are strong determents of heavy metal contamination in dietary supplements products.
    Matched MeSH terms: Food Safety*
  7. Zhang Y, Zhou L, Zhang C, Show PL, Du A, Fu J, et al.
    Carbohydr Polym, 2020 Nov 01;247:116670.
    PMID: 32829798 DOI: 10.1016/j.carbpol.2020.116670
    With the growing interest in food safety and in environmental protection, it is more attractive to develop novel biodegradable packaging films. In this regard, one new blending film was prepared with curdlan (CD)/polyvinyl alcohol (PVA)/thyme essential oil. Our results demonstrated that the mechanical properties of the blending film were the best when the ratio of the CD and PVA was 4:1. Further, the barrier properties of the film were optimized by incorporating with thyme essential oil. It was proved that not only water vapor permeability was lower, but also the elongation at break was improved, when 2% (w/w) thyme essential oil used. The potential interactions of the film matrix were analyzed by FTIR, XRD and Cryo-scanning electron microscopy. Importantly, both the antioxidant activity and antibacterial activity were improved. Finally, the blending film was employed for the preservation of chilled meat, while the shelf life was extended up to 10 days.
    Matched MeSH terms: Food Safety
  8. Ong HT, Samsudin H, Soto-Valdez H
    PMID: 33081493 DOI: 10.1080/10408398.2020.1830747
    Plastic packaging materials (PPMs) protect food from contamination, maintain quality, and ease transportation and distribution. Additives included during the manufacturing and processing of PPMs improve flexibility, durability, barrier properties, and sometimes aid the processing itself. During processing, these additives, even the monomers used to produce the plastics, can produce side products or breakdown products as a result of degradation and various chemical reactions. These starting substances and reaction products include 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), phthalates/phthalic acid esters, alkylphenols, and bis(2-ethylhexyl) adipate, which are considered endocrine-disrupting chemicals (EDCs) that may interfere with the human endocrine system and produce adverse reproductive, neurological, developmental, and immune effects. When in contact with food, EDCs can migrate into food if conditions are appropriate, thereby possibly jeopardizing food safety. Chemical risk assessment and regulatory control were developed to reduce human exposure to harmful migrated EDCs. This article gives an overview of the migration of EDCs from PPMs and control measures to reduce the risk of adverse impacts on human health.
    Matched MeSH terms: Food Safety
  9. Sukirman AN, Khalex HB, Mustafa S, Sarbini SR, Hassan S, S-Hussain SS, et al.
    J Food Prot, 2020 Oct 01;83(10):1764-1774.
    PMID: 32463874 DOI: 10.4315/JFP-19-543
    ABSTRACT: Umai is a popular, traditional, native dish of the Melanau ethnic group in Sarawak. It is prepared using thin slices of raw marine fish marinated with calamansi juice and seasoned with other ingredients. The local people believe that the acidity of the citrus juice, along with the use of salt and spice, can slightly cook the fish and remove the fishy smell. The aim of this study was to investigate (i) the different umai handling and preparation practices and (ii) the personal experience of umai consumption among respondents. A purposive sample of 100 umai makers, divided into two equal groups, professionals and nonprofessionals, participated in the study. We found that Spanish mackerel and hairfin anchovy were ranked first and second in the list of species chosen for making umai, with the former mostly preferred by the professional group, as opposed to the latter, which was preferred by the nonprofessional group. Black pomfret was ranked third, where it is equally preferred by both groups. About 20% of respondents would freeze the raw fish chunks prior to preparing umai, as opposed to 26% who would sun dry their fish. Other techniques, such as salting and marinating (using calamansi juice), were also used during the preparation of umai. Most of the respondents indicated that they would consider the umai ready to eat soon after marinating (with all ingredients) the raw fish. One-third of both respondent groups indicated that they would chill the umai dish at 4°C for 30 min before serving. The respondents could not provide any rationale behind these food preparation practices. Overall, this study provides evidence of the different preparation methods for umai. These practices can thus be considered important targets for public health education campaigns seeking to improve food safety surrounding this food group.

    HIGHLIGHTS:

    Matched MeSH terms: Food Safety
  10. Mir SA, Siddiqui MW, Dar BN, Shah MA, Wani MH, Roohinejad S, et al.
    J Appl Microbiol, 2020 Sep;129(3):474-485.
    PMID: 31800143 DOI: 10.1111/jam.14541
    Consumers' demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.
    Matched MeSH terms: Food Safety
  11. Soon JM
    J Food Prot, 2020 Mar 01;83(3):452-459.
    PMID: 32065648 DOI: 10.4315/0362-028X.JFP-19-415
    ABSTRACT: Social media offers numerous advantages for personal users and organizations to communicate, socialize, and market their products. When used correctly, social media is an effective tool to communicate and to share food safety news and good practices. However, there have been reports of fake food safety news shared via social media, fueling panic and resulting in a loss of revenue. Thus, this study aimed to investigate the consumers' awareness, trust, and usage of social media in communicating food safety news in Malaysia. A questionnaire divided into five sections-(i) demographics, (ii) reaction to food safety news, (iii) consumers' awareness, (iv) social media truth and level of trust, and (v) social media uses and content creation-was created and shared online. A total of 341 questionnaires were returned of which 339 surveys were valid. This study revealed that less than one-third of the study group (27.1%) knew which of the food safety news were fake. Most respondents (67.8%) were less likely to purchase the affected foods if the foods were featured in social media as problematic, although no differences were made between true and fake news and how that would influence respondents' willingness to purchase affected foods. Overall, 62% of the respondents agreed or strongly agreed about the usage of social media and its ability to prevent food poisoning cases, while more than 50% of the respondents were in total agreement that social media allow consumers to act more responsibly by sharing food safety news. Respondents tended to trust information shared by scientists (67.5%) and family members and friends (33%). Respondents would most often share the news after verifying its authenticity (46%). If respondents experienced a personal food safety issue (e.g., discovered a fly in their meal), they seldom or never took photos to post online (56.1%). It is possible that the respondents preferred to inform the food handlers and/or shop owners about the affected products rather than post the photos online. It is suggested that targeted food safety information and media literacy be provided to improve consumers' awareness and to positively influence self-verification of the food safety information before sharing. This study provides crucial insights for a range of stakeholders, particularly public authorities, food bloggers, and the public, in using social media effectively to build consumers' awareness and trust in food safety information.

    HIGHLIGHTS:

    Matched MeSH terms: Food Safety*
  12. Yazid SNE, Jinap S, Ismail SI, Magan N, Samsudin NIP
    Compr Rev Food Sci Food Saf, 2020 03;19(2):643-669.
    PMID: 33325175 DOI: 10.1111/1541-4337.12541
    In this review, we present the current information on development and applications of biological control against phytopathogenic organisms as well as mycotoxigenic fungi in Malaysia as part of the integrated pest management (IPM) programs in a collective effort to achieve food security. Although the biological control of phytopathogenic organisms of economically important crops is well established and widely practiced in Malaysia with considerable success, the same cannot be said for mycotoxigenic fungi. This is surprising because the year round hot and humid Malaysian tropical climate is very conducive for the colonization of mycotoxigenic fungi and the potential contamination with mycotoxins. This suggests that less focus has been made on the control of mycotoxigenic species in the genera Aspergillus, Fusarium, and Penicillium in Malaysia, despite the food security and health implications of exposure to the mycotoxins produced by these species. At present, there is limited research in Malaysia related to biological control of the key mycotoxins, especially aflatoxins, Fusarium-related mycotoxins, and ochratoxin A, in key food and feed chains. The expected threats of climate change, its impacts on both plant physiology and the proliferation of mycotoxigenic fungi, and the contamination of food and feed commodities with mycotoxins, including the discovery of masked mycotoxins, will pose significant new global challenges that will impact on mycotoxin management strategies in food and feed crops worldwide. Future research, especially in Malaysia, should urgently focus on these challenges to develop IPM strategies that include biological control for minimizing mycotoxins in economically important food and feed chains for the benefit of ensuring food safety and food security under climate change scenarios.
    Matched MeSH terms: Food Safety
  13. Khalil I, Yehye WA, Muhd Julkapli N, Sina AA, Rahmati S, Basirun WJ, et al.
    Analyst, 2020 Feb 17;145(4):1414-1426.
    PMID: 31845928 DOI: 10.1039/c9an02106j
    Surface enhanced Raman scattering (SERS) DNA biosensing is an ultrasensitive, selective, and rapid detection technique with the ability to produce molecule-specific distinct fingerprint spectra. It supersedes the long amplicon based PCR assays, the fluorescence and spectroscopic techniques with their quenching and narrow spectral bandwidth, and the electrochemical detection techniques using multiplexing. However, the performance of the SERS DNA biosensor relies on the DNA probe length, platform composition, both the presence and position of Raman tags and the chosen sensing strategy. In this context, we herein report a SERS biosensor based on dual nanoplatforms with a uniquely designed Raman tag (ATTO Rho6G) intercalated short-length DNA probe for the sensitive detection of the pig species Sus scrofa. In the design of the signal probe (SP), a Raman tag was incorporated adjacent to the spacer arm, followed by a terminal thiol modifier, which consequently had a strong influence on the SERS signal enhancement. The detection strategy involves the probe-target DNA hybridization mediated coupling of the two platforms, i.e., the graphene oxide-gold nanorod (GO-AuNR) functionalized capture probe (CP) and SP-conjugated gold nanoparticles (AuNPs), consequently enhancing the SERS intensity by both the electromagnetic hot spots generated at the junctions or interstices of the two platforms and the chemical enhancement between the AuNPs and the adsorbed intercalated Raman tag. This dual platform based SERS DNA biosensor exhibited outstanding sensitivity in detecting pork DNA with a limit of detection (LOD) of 100 aM validated with DNA extracted from a pork sample (LOD 1 fM). Moreover, the fabricated SERS biosensor showed outstanding selectivity and specificity for differentiating the DNA sequences of six closely related non-target species from the target DNA sequences with single and three nucleotide base-mismatches. Therefore, the developed short-length DNA linked dual platform based SERS biosensor could replace the less sensitive traditional methods of pork DNA detection and be adopted as a universal detection approach for the qualitative and quantitative detection of DNA from any source.
    Matched MeSH terms: Food Safety
  14. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
    Matched MeSH terms: Food Safety*
  15. Curren E, Leaw CP, Lim PT, Leong SCY
    Front Bioeng Biotechnol, 2020;8:562760.
    PMID: 33344429 DOI: 10.3389/fbioe.2020.562760
    Microplastic pollution is a global issue that has a detrimental impact on food safety. In marine environments, microplastics are a threat to marine organisms, as they are often the same size range as prey and are mistaken as food. Consumption of microplastics has led to the damage of digestive organs and a reduction in growth and reproductive output. In this study, microplastic pollution was assessed across three commercially available shrimp species that were obtained from the supermarkets of Singapore. A total of 93 individuals were studied from the Pacific white leg shrimp, Litopenaeus vannamei, the Argentine red shrimp Pleoticus muelleri and the Indian white shrimp Fenneropenaeus indicus. Microplastic fibers, fragments, film and spheres were identified from the digestive tract of these organisms. Microplastic abundance ranged from 13.4 to 7050 items. F. indicus exhibited the highest number of microplastics. Microplastic film was the most abundant in L. vannamei individuals (93-97%) and spheres were the most abundant in P. muelleri (70%) and F. indicus (61%) individuals. This study demonstrates that microplastic contamination is evident in commonly consumed shrimp and highlights the role of shrimp in the trophic transfer and accumulation of microplastics in seafood. The consumption of microplastic-containing seafood is a route of exposure to humans and has implications on human health and food security. Capsule: Microplastics were examined in three shrimp species from the supermarkets of Singapore. Microplastics ranged from 13.4 to 7050 items of shrimp.
    Matched MeSH terms: Food Safety
  16. Soon JM, Wahab IRA, Hamdan RH, Jamaludin MH
    PLoS One, 2020;15(7):e0235870.
    PMID: 32639978 DOI: 10.1371/journal.pone.0235870
    Factors contributing to foodborne illnesses in Malaysia were identified as insanitary food handling procedures and lack of hygiene in food preparation area. Food safety at home is a critical point as consumers represent the final step in food preparation and prevention of foodborne diseases. This study aims to investigate the food safety knowledge, attitude and self-reported practices among consumers in Malaysia. An online survey was conducted, and data were analysed using descriptive statistics and exploratory factor analysis. A model linking food safety knowledge and attitude and their direct effects on practices were confirmed using structural equation modelling (SEM). The proposed model fulfilled the goodness of fit indices and is deemed acceptable. Respondents demonstrate good level of food safety knowledge and positive attitudes and self-reported practices. Food safety knowledge has a negative and insignificant relationship with food safety practices (β1 = -0.284, p>0.05) while attitude significantly affects food safety practices (β1 = 0.534, p<0.05). The findings clearly indicate that food safety knowledge does not directly affect food safety practices This is also the first study to provide new empirical findings on thermometer usage among consumers in Malaysia. This study establishes an important point of reference where consumers use visual appearances to determine if food is thoroughly cooked and practice washing raw chicken prior to cooking. Food safety practices at home play a critical role in protecting consumers in reducing risks of foodborne illnesses.
    Matched MeSH terms: Food Safety
  17. Mohd Nawawee NS, Abu Bakar NF, Zulfakar SS
    PMID: 31766289 DOI: 10.3390/ijerph16224463
    Improper handling, poor hygienic practices, and lack of environmental control affect the safety of street-vended beverages. The objective of this study is to determine the bacterial contamination level of three types of beverages (cordial-based drinks, milk-based drinks, fruit juices) sold by street vendors at Chow Kit, Kuala Lumpur. A total of 31 samples of beverages were analyzed to determine total viable count (TVC), total coliform, Escherichia coli, and Staphylococcus aureus counts via the standard plate count method. The results showed that only 9.7% of the total samples were not contaminated with the tested microorganisms. All milk-based drink samples were positive for TVC and also had the highest average bacterial counts at 5.30 ± 1.11 log Colony Forming Unit/mL (CFU/mL). About 71% of the samples were contaminated with total coliform with the average readings ranging between 4.30 and 4.75 log CFU/mL, whereas 58.1% of the samples were positive with S. aureus, with fruit juices having the highest average reading (3.42 ± 1.15 log CFU/mL). Only one sample (milk-based drink) was E. coli positive. This study showed that the microbiological safety level of street-vended beverages in Chow Kit, Kuala Lumpur was average and needs to be improved. Provision of food safety education and adequate sanitary facilities at vending sites are suggested to increase the safety of food products.
    Matched MeSH terms: Food Safety
  18. Ahmad NA, Yook Heng L, Salam F, Mat Zaid MH, Abu Hanifah S
    Sensors (Basel), 2019 Nov 05;19(21).
    PMID: 31694284 DOI: 10.3390/s19214813
    A developed colorimetric pH sensor film based on edible materials for real-time monitoring of food freshness is described. The mixed natural dyes from edible plants Clitoria sp and Brassica sp were extracted and incorporated into ι-carrageenan film as a colorimetric pH sensor film for monitoring food spoilage and its freshness. The color changes of the developed colorimetric sensor film were measured with chromametry and UV-vis spectroscopy, respectively. Experimental results show that colorimetric pH sensor film demonstrated statistically significant differences (p < 0.05) between CIE-L*a*b* coordinates color system indicated that the developed colorimetric sensor film was able to give a gradual change in color over a wide pH range. The color of the colorimetric sensor film also changes discretely and linearly with factors that contribute to food spoilage using shrimp and durian samples. Moreover, the developed colorimetric pH sensor film has the potential to be used as a safe, non-destructive testing and also a flexibly visual method for direct assessment of food freshness indicator during storage.
    Matched MeSH terms: Food Safety*
  19. Myzabella N, Fritschi L, Merdith N, El-Zaemey S, Chih H, Reid A
    Int J Occup Environ Med, 2019 10;10(4):159-173.
    PMID: 31586381 DOI: 10.15171/ijoem.2019.1576
    BACKGROUND: The palm oil industry is the largest contributor to global production of oils and fats. Indonesia and Malaysia are the largest producers of palm oil. More than a million workers are employed in this industry, yet there is a lack of information on their occupational health and safety.

    OBJECTIVE: To identify and summarize occupational hazards among oil palm plantation workers.

    METHODS: A search was carried out in June 2018 in PubMed, Web of Science, Scopus, and Ovid. Relevant publications were identified by a systematic search of four databases and relevant journals. Publications were included if they examined occupational hazards in oil palm plantation workers.

    RESULTS: 941 publications were identified; of these, 25 studies were found eligible to be included in the final review. Of the 25 studies examined, 19 were conducted in Malaysia, 2 in Costa Rica, and one each in Ghana, Indonesia, Myanmar, Papua New Guinea, and Cameroon. Oil palm plantation workers were found to be at risk of musculoskeletal conditions, injuries, psychosocial disorders, and infectious diseases such as malaria and leptospirosis. In addition, they have potential exposure to paraquat and other pesticides.

    CONCLUSION: In light of the potential of palm oil for use as a biofuel, this is an industry with strong growth potential. The workers are exposed to various occupational hazards. Further research and interventions are necessary to improve the working conditions of this already vast and growing workforce.

    Matched MeSH terms: Food Safety
  20. Sinclair M, Idrus Z, Nhiem DV, Katawatin S, Todd B, Burn GL, et al.
    Animals (Basel), 2019 Jul 04;9(7).
    PMID: 31277448 DOI: 10.3390/ani9070416
    Understanding what might motivate livestock stakeholders to improve animal welfare is useful information when developing initiatives that benefit from stakeholder engagement. This study was designed to assess the strength of motivating drivers in the development of attitudes to animal welfare, and the factors that impacted their ability to improve animal welfare. During a series of qualitative focus group sessions with livestock leaders across the same countries (Malaysia, China, Vietnam and Thailand), the current study presented livestock leaders (n = 139) with the most significant results in their country, and collected data pertaining to the meaning and applicability of these results. This data was then subject to thematic analysis to identify salient and repeated motivating factors and meanings. This process revealed a complex picture of relationships between motivators and the contexts that drive them. Figures are presented to begin illustrating these relationships. Some strong motivators were uncovered that were previously rated low in the survey (i.e., financial benefit) or not included at all (e.g., food safety). This paper also presents the opportunity to better understand the strength and relationship of extrinsic and intrinsic motivational forces behind animal welfare improvement.
    Matched MeSH terms: Food Safety
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links