Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Zal U’yun Wan Mahmood, Mei, Wo Yii, Abdul Kadir Ishak
    MyJurnal
    This study was performed to observe the variation in the distribution of 210Po,210Pb and 210Po/210Pb activity ratio throughtheir vertical profile of the sediment cores takenat surrounding Sungai Linggi estuary. Five sediment cores were takenin February 2011 and were cutto an intervalof 2 cm layer. Activity concentrations of 210Po and 210Pb were determined using alpha radiochemical analysis and gamma direct measurement, respectively. Generally, the measured activity of 210Po, 210Pb and 210Po/210Pbwere in the ranges of 22.73 –139.06 Bqkg-1dw., 37.88 –176.24 Bqkg-1dw.and 0.23 –1.34, respectively. The variation in the distribution profile for the radionuclides are believed to be influencedby human activities such as agriculture, fertilizer, vehicles, burned fuel fossil and forest, industrialand others via river input from land-base.Other factor is due to organic mattercontent played importantrole as the geochemical carrier to transportthose radionuclides at study area. It was provedthat hasa strong correlation between the radionuclide distribution and the sedimentcomposition of organic matter.Furthermore, in those rangesreflectedthat 210Pb activities were higher than210Po with an activity ratio average of 0.79. This is probably due to dramatic increase of excess 210Pb supplied from atmospheric deposition, in situ decay of 226Ra and as a result of diagenetic remolibilazationof 210Pbin deeper layesof the sediment column. Thus, thosefactors are majorcontributions on thevariation of 210Po and 210Pb in the sediment core at surrounding Sungai Linggi estuary.
    Matched MeSH terms: Fossils
  2. Von Schimonsky DM, Bichuette ME, Mahnert V
    Zootaxa, 2014;3889(3):442-6.
    PMID: 25544278 DOI: 10.11646/zootaxa.3889.3.6
    The small pseudoscorpion family Pseudochiridiidae Chamberlin, 1923 comprises two genera and 12 extant species recorded from Asia (Burma, Christmas Island, Indonesia, India, Nepal, Malaysia, New Guinea, Philippines, Nicobars and Sumba), eastern, central and southern Africa (Chad, D.R. Congo, Kenya, South Africa, Tanzania), Madagascar, Seychelles (Aldabra), North America (Florida) and the Caribbean Islands of Dominican Republic and Cuba (Harvey 2013, Barba & Barroso 2013); one unidentified species is mentioned for the fauna of Mexico (Ceballos 2004). A fossil species has been described from Dominican amber by Judson (2007), who predicted the presence of this family in South America. 
    Matched MeSH terms: Fossils
  3. Veera Singham G, Othman AS, Lee CY
    PLoS One, 2017;12(11):e0186690.
    PMID: 29186140 DOI: 10.1371/journal.pone.0186690
    Dispersal of soil-dwelling organisms via the repeatedly exposed Sunda shelf through much of the Pleistocene in Southeast Asia has not been studied extensively, especially for invertebrates. Here we investigated the phylogeography of an endemic termite species, Macrotermes gilvus (Hagen), to elucidate the spatiotemporal dynamics of dispersal routes of terrestrial fauna in Pleistocene Southeast Asia. We sampled 213 termite colonies from 66 localities throughout the region. Independently inherited microsatellites and mtDNA markers were used to infer the phylogeographic framework of M. gilvus. Discrete phylogeographic analysis and molecular dating based on fossil calibration were used to infer the dynamics of M. gilvus dispersal in time and space across Southeast Asia. We found that the termite dispersal events were consistently dated within the Pleistocene time frame. The dispersal pattern was multidirectional, radiating eastwards and southwards out of Indochina, which was identified as the origin for dispersal events. We found no direct dispersal events between Sumatra and Borneo despite the presence of a terrestrial connection between them during the Pleistocene. Instead, central Java served as an important link allowing termite colonies to be established in Borneo and Sumatra. Our findings support the hypothesis of a north-south dispersal corridor in Southeast Asia and suggest the presence of alternative dispersal routes across Sundaland during the Pleistocene. For the first time, we also propose that a west-east dispersal through over-water rafting likely occurred across the Pleistocene South China Sea. We found at least two independent entry routes for terrestrial species to infiltrate Sumatra and Borneo at different times.
    Matched MeSH terms: Fossils*
  4. Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, et al.
    Mol Phylogenet Evol, 2017 04;109:113-137.
    PMID: 28069533 DOI: 10.1016/j.ympev.2017.01.002
    Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.
    Matched MeSH terms: Fossils
  5. Tsuji K, Mohd Nor Faizal Ghazalli, Zulhairil Ariffin, Mohd Shukor Nordin, Khaidizar MI, Mohammad Ehsan Dulloo, et al.
    Sains Malaysiana, 2011;40:1407-1412.
    Nipa (Nypa fruticans) is one of the most widely distributed and useful palm in the mangrove forests in the South, Southeast Asia and Oceania. Its distribution area is known to be larger in ancient time than at present, as evidenced by its fossils found in North America, South America, Egypt and Europe. Nipa has a wide diversity of use. Traditionally it is used as roof materials, cigarette wrapper, medicine and its sap is fermented to alcohol. Recently, research on nipa has focused on its potential use as a biofuel crop because it has several advantages compared with other biofuel-alcohol crops. For example it has high alcohol content, no competition with other crop for agricultural land and no bagasse disposal problem. In spite of such usefulness, scientific reports on biology of nipa are limited. Information on genetic diversity, cytogenetics and chemical composition are lacking for nipa plant. On the other hand, morphological characters of nipa have been described in many reports. This paper attempted to provide a general review of the nipa plant based on available literatures.
    Matched MeSH terms: Fossils
  6. Spehar SN, Sheil D, Harrison T, Louys J, Ancrenaz M, Marshall AJ, et al.
    Sci Adv, 2018 06;4(6):e1701422.
    PMID: 29963619 DOI: 10.1126/sciadv.1701422
    Conservation benefits from understanding how adaptability and threat interact to determine a taxon's vulnerability. Recognizing how interactions with humans have shaped taxa such as the critically endangered orangutan (Pongo spp.) offers insights into this relationship. Orangutans are viewed as icons of wild nature, and most efforts to prevent their extinction have focused on protecting minimally disturbed habitat, with limited success. We synthesize fossil, archeological, genetic, and behavioral evidence to demonstrate that at least 70,000 years of human influence have shaped orangutan distribution, abundance, and ecology and will likely continue to do so in the future. Our findings indicate that orangutans are vulnerable to hunting but appear flexible in response to some other human activities. This highlights the need for a multifaceted, landscape-level approach to orangutan conservation that leverages sound policy and cooperation among government, private sector, and community stakeholders to prevent hunting, mitigate human-orangutan conflict, and preserve and reconnect remaining natural forests. Broad cooperation can be encouraged through incentives and strategies that focus on the common interests and concerns of different stakeholders. Orangutans provide an illustrative example of how acknowledging the long and pervasive influence of humans can improve strategies to preserve biodiversity in the Anthropocene.
    Matched MeSH terms: Fossils
  7. Sharma R, Goossens B, Heller R, Rasteiro R, Othman N, Bruford MW, et al.
    Sci Rep, 2018 01 17;8(1):880.
    PMID: 29343863 DOI: 10.1038/s41598-017-17042-5
    The origin of the elephant on the island of Borneo remains elusive. Research has suggested two alternative hypotheses: the Bornean elephant stems either from a recent introduction in the 17th century or from an ancient colonization several hundreds of thousands years ago. Lack of elephant fossils has been interpreted as evidence for a very recent introduction, whereas mtDNA divergence from other Asian elephants has been argued to favor an ancient colonization. We investigated the demographic history of Bornean elephants using full-likelihood and approximate Bayesian computation analyses. Our results are at odds with both the recent and ancient colonization hypotheses, and favour a third intermediate scenario. We find that genetic data favour a scenario in which Bornean elephants experienced a bottleneck during the last glacial period, possibly as a consequence of the colonization of Borneo, and from which it has slowly recovered since. Altogether the data support a natural colonization of Bornean elephants at a time when large terrestrial mammals could colonise from the Sunda shelf when sea levels were much lower. Our results are important not only in understanding the unique history of the colonization of Borneo by elephants, but also for their long-term conservation.
    Matched MeSH terms: Fossils
  8. Ruff CB, Sylvester AD, Rahmawati NT, Suriyanto RA, Storm P, Aubert M, et al.
    J Hum Evol, 2022 Nov;172:103252.
    PMID: 36162353 DOI: 10.1016/j.jhevol.2022.103252
    Late Pleistocene hominin postcranial specimens from Southeast Asia are relatively rare. Here we describe and place into temporal and geographic context two partial femora from the site of Trinil, Indonesia, which are dated stratigraphically and via Uranium-series direct dating to ca. 37-32 ka. The specimens, designated Trinil 9 and 10, include most of the diaphysis, with Trinil 9 being much better preserved. Microcomputed tomography is used to determine cross-sectional diaphyseal properties, with an emphasis on midshaft anteroposterior to mediolateral bending rigidity (Ix/Iy), which has been shown to relate to both body shape and activity level in modern humans. The body mass of Trinil 9 is estimated from cortical area and reconstructed length using new equations based on a Pleistocene reference sample. Comparisons are carried out with a large sample of Pleistocene and Holocene East Asian, African, and European/West Asian femora. Our results show that Trinil 9 has a high Ix/Iy ratio, most consistent with a relatively narrow-bodied male from a mobile hunting-gathering population. It has an estimated body mass of 55.4 kg and a stature of 156 cm, which are small relative to Late Pleistocene males worldwide, but larger than the penecontemporaneous Deep Skull femur from Niah Cave, Malaysia, which is very likely female. This suggests the presence of small-bodied active hunter-gatherers in Southeast Asia during the later Late Pleistocene. Trinil 9 also contrasts strongly in morphology with earlier partial femora from Trinil dating to the late Early-early Middle Pleistocene (Femora II-V), and to a lesser extent with the well-known complete Femur I, most likely dating to the terminal Middle-early Late Pleistocene. Temporal changes in morphology among femoral specimens from Trinil parallel those observed in Homo throughout the Old World during the Pleistocene and document these differences within a single site.
    Matched MeSH terms: Fossils
  9. Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ
    Mol Phylogenet Evol, 2018 05;122:59-79.
    PMID: 29410353 DOI: 10.1016/j.ympev.2018.01.014
    Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.
    Matched MeSH terms: Fossils/history
  10. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
    Matched MeSH terms: Fossils
  11. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: Fossils
  12. Norha Abdul Hadi, Mawar Hasyikin Abu Seman, Madhiyah Yahaya Bermakai
    MyJurnal
    Derivation of activated carbon from biomass wastes for energy storage applications such as fuel cells and supercapacitors are attracting wide attractions as the world is now demand for other sustainable energy that can help to explore new technologies especially for energy conversion and storage. This is important because the world now is facing a rapid depletion of fossil energy. In this review, an outline of recent trends towards biomass-derived specifically from fruit-based biomass wastes is explained in a holistic manner. Thanks to their high carbon content, high specific surface area and developed porous structure, biomass-derived chars can be treated and converted into carbon. The performance of activated carbon in terms of Brunette Emmet Teller (BET) surface area, micropore volume, total pore volume and specific capacitance has been reported. This review showed that higher BET surface will contribute to higher pore volume in the activated carbon that makes them good candidates for the fabrication of electrodes in supercapacitor applications. This study was focused on providing a detailed comparison of published studies that utilized different physical and chemical routes and their effect of modification such as various activation temperatures and the ratio of activating agents towards the performance of the activated carbon under different parameters. Implementing chemical routes with an ideal 600°C – 850°C and inclusion ratio might be effective to produce high performance activated carbon.
    Matched MeSH terms: Fossils
  13. Nita Salina Abu Bakar, Zal U’yun Wan Mahmood, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Anthropogenic airborne depositions of 210Po,
    210Pb and 210Po/210Pb in the mosses and surface soils
    collected at the vicinity of a coal-fired power plant were studied. The purpose of the study was to
    determine activity concentrations of 210Po,
    210Pb and 210Po/210Pb for assessing their variation
    accumulation in the mosses and surface soils collected at the vicinity of a coal-fired power plant.
    Other purposes were to determine their concentration factor (CF) in relation to track the potential
    source of those radionuclides and to identify most suitable moss species as a biological indicator
    for atmospheric deposition contaminants. In this study, different species of moss Leucobryum
    aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in
    May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in
    Pontian, Johor. The activity concentrations of 210Po,
    210Pb and 210Po/210Pb in mosses were in the
    range of 76.81 ± 4.94 – 251.33 ± 16.33 Bq/kg dry wt., 54.37 ± 3.38 – 164.63 ± 11.64 Bq/kg dry wt.
    and 1.10 – 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil
    were 33.53 ± 2.10 – 179.67 ± 12.15 Bq/kg dry wt., 20.55 ± 1.33 – 106.62 ± 6.64 Bq/kg dry wt. and
    1.61 – 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more
    210Po and 210Pb, wide geographical distribution, most abundant and high CF, therefore, the
    findings can be concluded this species was the most suitable as a biological indicator for
    atmospheric deposition contaminants such as 210Po and 210Pb. Furthermore, it is clear the
    accumulation of 210Po and 210Pb in mosses might be supplied from various sources of atmospheric
    deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities,
    burned fuel fossil and forest; and other potential sources. Meanwhile, the
    Matched MeSH terms: Fossils
  14. Mohammed Saifuddin, Amru N. Boyce
    Sains Malaysiana, 2017;46:1771-1778.
    As fossil energy resources are depleting quick and energy security is playing a vital role in the world economy. Quest for alternative energy sources have turned researches investigation in waste foods for next generation fuel. Biodiesel is usually considered to be environmentally friendly as it reduces greenhouse gas emission. Fish wastes rich in fatty acids and can be used as the raw material to produce biodiesel through transesterification reaction. The results showed that the seven peaks are fatty acid methyl esters, indicating all the triglycerides were successfully methylated to methyl esters. Fish based biodiesel provided a significant reduction in carbon monoxide (CO) and hydrocarbon (HC) emissions under engine loads of 15 (Nm) and required no engine modification. The viscosity of the produced biodiesel was within the range of international standards (ASTM). The biodiesel was found to contain a low base number and exhibited a lower specific fuel consumption compared to the conventional diesel. It can be concluded that biodiesel derived from waste fish oil can be considered as a potential source of commercial biodiesel.
    Matched MeSH terms: Fossils
  15. Micky Vincent, Berry Rence Anak Senawi, Ennry Esut, Norizawati Muhammad Nor, Dayang Salwani Awang Adeni
    Sains Malaysiana, 2015;44:899-904.
    Bioethanol is a very environmentally friendly liquid biofuel that is not only renewable, but also sustainable. It is currently
    deemed as a highly suitable additive and substitute energy source to replace fossil based fuel. In this study, bioethanol
    was produced from sago hampas by using commercial amylase, cellulase and Saccharomyces cerevisiae via sequential
    saccharification and simultaneous fermentation (SSSF), a modified version of the simultaneous saccharification and
    fermentation (SSF) process. SSSF was performed on sago hampas at 2.5 and 5.0% (w/v) feedstock load for five days. The
    samples taken from the SSSF broths were analysed via high performance liquid chromatography (HPLC) for ethanol, glucose
    and acetic acid production. From the results obtained, SSSF with 5.0% sago hampas loading exhibited the highest ethanol
    production at 14.13 g/L (77.43% of theoretical ethanol yield), while SSSF using 2.5% sago hampas loading produced
    ethanol at 6.45 g/L (69.24% of theoretical ethanol yield). This study has shown that ethanol not only can be produced
    from sago hampas using different enzyme mixtures and S. cerevisiae via SSSF, but yields were also high, making this
    process highly promising for the production of cheap and sustainable ethanol as fuel.
    Matched MeSH terms: Fossils
  16. Matsumura H, Hudson MJ
    Am. J. Phys. Anthropol., 2005 Jun;127(2):182-209.
    PMID: 15558609
    This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.
    Matched MeSH terms: Fossils*
  17. Matsumura H, Zuraina M
    Am. J. Phys. Anthropol., 1999 Jul;109(3):327-40.
    PMID: 10407463
    A nearly complete human skeleton dating to the Early Holocene (epi-Paleolithic culture) excavated from Gua Gunung Runtuh, Malaysia, is described. Cranial, dental, and limb bone measurements are recorded on the skeleton, and compared with early and modern skeletal samples from Southeast Asia and Australia. The comparisons demonstrate that the Gua Gunung specimen is most similar to Australian Aborigines in dental and limb measurements, while the cranial measurements indicate a close affinity to Mesolithic samples from Malaysia and Flores. These findings further suggest that the Gua Gunung skeleton, as well as other fossils from Tabon and Niah, are representative of an early group of people who occupied Sundaland during the late Pleistocene, and may be the ancestors of Australian Aborigines. Some of the dental and limb bone measurements exhibited by the ancestors persist in Southeast Asian populations until the early Holocene. Differences in cranial traits have, however, accumulated since the late Pleistocene in Australian Aborigines and early Southeast Asian peoples.
    Matched MeSH terms: Fossils*
  18. Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, et al.
    Curr Biol, 2020 10 05;30(19):3871-3879.e7.
    PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
    Matched MeSH terms: Fossils
  19. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Fossils
  20. Liu J, Andersson A, Zhong G, Geng X, Ding P, Zhu S, et al.
    Sci Total Environ, 2020 Jul 03;744:140359.
    PMID: 32688001 DOI: 10.1016/j.scitotenv.2020.140359
    Black Carbon (BC) deteriorates air quality and contributes to climate warming, yet its regionally- and seasonally-varying emission sources are poorly constrained. Here we employ natural abundance radiocarbon (14C) measurements of BC intercepted at a northern Malaysia regional receptor site, Bachok, to quantify the relative biomass vs. fossil source contributions of atmospheric BC, in a first year-round study for SE Asia (December 2015-December 2016). The annual average 14C signature suggests as large contributions from biomass burning as from fossil fuel combustion. This is similar to findings from analogous measurements at S Asian receptors sites (~50% biomass burning), while E Asia sites are dominated by fossil emission (~20% biomass burning). The 14C-based source fingerprinting of BC in the dry spring season in SE Asia signals an even more elevated biomass burning contribution (~70% or even higher), presumably from forest, shrub and agricultural fires. This is consistent with this period showing also elevated ratio of organic carbon to BC (up from ~5 to 30) and estimates of BC emissions from satellite fire data. Hence, the present study emphasizes the importance of mitigating dry season vegetation fires in SE Asia.
    Matched MeSH terms: Fossils
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links