Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Matsumura H, Hudson MJ
    Am. J. Phys. Anthropol., 2005 Jun;127(2):182-209.
    PMID: 15558609
    This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.
    Matched MeSH terms: Fossils*
  2. Matsumura H, Zuraina M
    Am. J. Phys. Anthropol., 1999 Jul;109(3):327-40.
    PMID: 10407463
    A nearly complete human skeleton dating to the Early Holocene (epi-Paleolithic culture) excavated from Gua Gunung Runtuh, Malaysia, is described. Cranial, dental, and limb bone measurements are recorded on the skeleton, and compared with early and modern skeletal samples from Southeast Asia and Australia. The comparisons demonstrate that the Gua Gunung specimen is most similar to Australian Aborigines in dental and limb measurements, while the cranial measurements indicate a close affinity to Mesolithic samples from Malaysia and Flores. These findings further suggest that the Gua Gunung skeleton, as well as other fossils from Tabon and Niah, are representative of an early group of people who occupied Sundaland during the late Pleistocene, and may be the ancestors of Australian Aborigines. Some of the dental and limb bone measurements exhibited by the ancestors persist in Southeast Asian populations until the early Holocene. Differences in cranial traits have, however, accumulated since the late Pleistocene in Australian Aborigines and early Southeast Asian peoples.
    Matched MeSH terms: Fossils*
  3. Lord E, Dussex N, Kierczak M, Díez-Del-Molino D, Ryder OA, Stanton DWG, et al.
    Curr Biol, 2020 10 05;30(19):3871-3879.e7.
    PMID: 32795436 DOI: 10.1016/j.cub.2020.07.046
    Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.
    Matched MeSH terms: Fossils
  4. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
    Matched MeSH terms: Fossils
  5. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
    Matched MeSH terms: Fossils/anatomy & histology
  6. Chan YH, Syed Abdul Rahman SNF, Lahuri HM, Khalid A
    Environ Pollut, 2021 Mar 01;278:116843.
    PMID: 33711630 DOI: 10.1016/j.envpol.2021.116843
    Carbon monoxide (CO) is a highly valuable component of syngas which could be used to synthesize various chemicals and fuels. Conventionally, syngas is derived from fossil-based natural gas and coal which are non-renewable. To curb the problem, CO2 gasification offers a win-win solution in which CO2 is converted with wastes to CO, achieving carbon emission mitigation and addressing waste disposal issue simultaneously. In this review, gasification of various wastes by CO2 with particular focus given to generation of CO-rich syngas is presented and critically discussed. This includes the effects of operating parameters (temperature, pressure and physicochemical properties of feedstocks) and advanced CO2 gasification techniques (catalytic CO2 gasification, CO2 co-gasification and microwave-driven CO2 gasification). Furthermore, associated technological challenges are highlighted and way forward in this field are proposed.
    Matched MeSH terms: Fossils
  7. Balasbaneh AT, Yeoh D, Juki MI, Ibrahim MHW, Abidin ARZ
    PMID: 33712956 DOI: 10.1007/s11356-021-13190-4
    This research aims to assess the sustainability of the most common earth-retaining walls (Gravity Walls and Cantilever Walls) in terms of environmental impacts, economic issues, and their combination. Gravity walls observed in this study consist of Gabion Wall, Crib Wall, and Rubble Masonry Wall, while Cantilever Walls include Reinforced Concrete Wall. Six different criteria were taken into account, including global warming potential, fossil depletion potential, eutrophication potential, acidification potential, human toxicity potential, and cost. To achieve the aim of this study, life cycle assessments, life cycle costs, and multi-criteria decision-making methods were implemented. The results showed that the most environmental-friendly option among all alternatives was the Gabion Wall, followed by the Rubble Masonry Wall. However, in terms of economic aspects, the Cantilever Concrete Wall was the best option, costing about 17% less than the Gabion Wall. On the other hand, the results of multi-criteria decision-making showed that the Gabion Wall was the most sustainable choice. This study addressed the research gap by carrying out a sustainability assessment of different retaining walls while considering cost and environmental impacts at the same time.
    Matched MeSH terms: Fossils
  8. Froufe E, Bolotov I, Aldridge DC, Bogan AE, Breton S, Gan HM, et al.
    Heredity (Edinb), 2020 Jan;124(1):182-196.
    PMID: 31201385 DOI: 10.1038/s41437-019-0242-y
    Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.
    Matched MeSH terms: Fossils
  9. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: Fossils
  10. Norha Abdul Hadi, Mawar Hasyikin Abu Seman, Madhiyah Yahaya Bermakai
    MyJurnal
    Derivation of activated carbon from biomass wastes for energy storage applications such as fuel cells and supercapacitors are attracting wide attractions as the world is now demand for other sustainable energy that can help to explore new technologies especially for energy conversion and storage. This is important because the world now is facing a rapid depletion of fossil energy. In this review, an outline of recent trends towards biomass-derived specifically from fruit-based biomass wastes is explained in a holistic manner. Thanks to their high carbon content, high specific surface area and developed porous structure, biomass-derived chars can be treated and converted into carbon. The performance of activated carbon in terms of Brunette Emmet Teller (BET) surface area, micropore volume, total pore volume and specific capacitance has been reported. This review showed that higher BET surface will contribute to higher pore volume in the activated carbon that makes them good candidates for the fabrication of electrodes in supercapacitor applications. This study was focused on providing a detailed comparison of published studies that utilized different physical and chemical routes and their effect of modification such as various activation temperatures and the ratio of activating agents towards the performance of the activated carbon under different parameters. Implementing chemical routes with an ideal 600°C – 850°C and inclusion ratio might be effective to produce high performance activated carbon.
    Matched MeSH terms: Fossils
  11. Ruff CB, Sylvester AD, Rahmawati NT, Suriyanto RA, Storm P, Aubert M, et al.
    J Hum Evol, 2022 Nov;172:103252.
    PMID: 36162353 DOI: 10.1016/j.jhevol.2022.103252
    Late Pleistocene hominin postcranial specimens from Southeast Asia are relatively rare. Here we describe and place into temporal and geographic context two partial femora from the site of Trinil, Indonesia, which are dated stratigraphically and via Uranium-series direct dating to ca. 37-32 ka. The specimens, designated Trinil 9 and 10, include most of the diaphysis, with Trinil 9 being much better preserved. Microcomputed tomography is used to determine cross-sectional diaphyseal properties, with an emphasis on midshaft anteroposterior to mediolateral bending rigidity (Ix/Iy), which has been shown to relate to both body shape and activity level in modern humans. The body mass of Trinil 9 is estimated from cortical area and reconstructed length using new equations based on a Pleistocene reference sample. Comparisons are carried out with a large sample of Pleistocene and Holocene East Asian, African, and European/West Asian femora. Our results show that Trinil 9 has a high Ix/Iy ratio, most consistent with a relatively narrow-bodied male from a mobile hunting-gathering population. It has an estimated body mass of 55.4 kg and a stature of 156 cm, which are small relative to Late Pleistocene males worldwide, but larger than the penecontemporaneous Deep Skull femur from Niah Cave, Malaysia, which is very likely female. This suggests the presence of small-bodied active hunter-gatherers in Southeast Asia during the later Late Pleistocene. Trinil 9 also contrasts strongly in morphology with earlier partial femora from Trinil dating to the late Early-early Middle Pleistocene (Femora II-V), and to a lesser extent with the well-known complete Femur I, most likely dating to the terminal Middle-early Late Pleistocene. Temporal changes in morphology among femoral specimens from Trinil parallel those observed in Homo throughout the Old World during the Pleistocene and document these differences within a single site.
    Matched MeSH terms: Fossils
  12. Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, et al.
    J Hum Evol, 2007 Mar;52(3):243-61.
    PMID: 17161859
    Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an 'intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest.
    Matched MeSH terms: Fossils*
  13. Curnoe D, Datan I, Goh HM, Sauffi MS
    J Hum Evol, 2019 02;127:133-148.
    PMID: 30777354 DOI: 10.1016/j.jhevol.2018.12.008
    The skeletal remains of Pleistocene anatomically modern humans are rare in island Southeast Asia. Moreover, continuing doubts over the dating of most of these finds has left the arrival time for the region's earliest inhabitants an open question. The unique biogeography of island Southeast Asia also raises questions about the physical and cultural adaptations of early anatomically modern humans, especially within the setting of rainforest inhabitation. Within this context the Deep Skull from the West Mouth of the Niah Caves continues to figure prominently owing to its relative completeness and the greater certainty surrounding its geological age. Recovered along with this partial cranium in 1958 were several postcranial bones including a partial femur which until now has received little attention. Here we provide a description and undertake a comparison of the Deep Skull femur finding it to be very small in all of its cross-sectional dimensions. We note a number of size and shape similarities to the femora of Indigenous Southeast Asians, especially Aeta people from the Philippines. We estimate its stature to have been roughly 145-146 cm and body mass around 35 kg, confirming similarities to Aeta females. Its extreme gracility indicated by low values for a range of biomechanical parameters taken midshaft meets expectations for a very small (female) Paleolithic East Asian. Interestingly, the second moment of area about the mediolateral axis is enlarged relative to the second moment of area about the anteroposterior axis, which could potentially signal a difference in activity levels or lifestyle compared with other Paleolithic femora. However, it might also be the result of sexual dimorphism in these parameters as well as possibly reflecting changes associated with aging.
    Matched MeSH terms: Fossils/anatomy & histology*
  14. Ibrahim YKh, Tshen LT, Westaway KE, Cranbrook EO, Humphrey L, Muhammad RF, et al.
    J Hum Evol, 2013 Dec;65(6):770-97.
    PMID: 24210657 DOI: 10.1016/j.jhevol.2013.09.005
    Nine isolated fossil Pongo teeth from two cave sites in Peninsular Malaysia are reported. These are the first fossil Pongo specimens recorded in Peninsular Malaysia and represent significant southward extensions of the ancient Southeast Asian continental range of fossil Pongo during two key periods of the Quaternary. These new records from Peninsular Malaysia show that ancestral Pongo successfully passed the major biogeographical divide between mainland continental Southeast Asia and the Sunda subregion before 500 ka (thousand years ago). If the presence of Pongo remains in fossil assemblages indicates prevailing forest habitat, then the persistence of Pongo at Batu Caves until 60 ka implies that during the Last Glacial Phase sufficient forest cover persisted in the west coast plain of what is now Peninsular Malaysia at least ten millennia after a presumed corridor of desiccation had extended to central and east Java. Ultimately, environmental conditions of the peninsula during the Last Glacial Maximum evidently became inhospitable for Pongo, causing local extinction. Following post-glacial climatic amelioration and reforestation, a renewed sea barrier prevented re-colonization from the rainforest refugium in Sumatra, accounting for the present day absence of Pongo in apparently hospitable lowland evergreen rainforest of Peninsular Malaysia. The new teeth provide further evidence that Pongo did not undergo a consistent trend toward dental size reduction over time.
    Matched MeSH terms: Fossils
  15. Nita Salina Abu Bakar, Zal U’yun Wan Mahmood, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Anthropogenic airborne depositions of 210Po,
    210Pb and 210Po/210Pb in the mosses and surface soils
    collected at the vicinity of a coal-fired power plant were studied. The purpose of the study was to
    determine activity concentrations of 210Po,
    210Pb and 210Po/210Pb for assessing their variation
    accumulation in the mosses and surface soils collected at the vicinity of a coal-fired power plant.
    Other purposes were to determine their concentration factor (CF) in relation to track the potential
    source of those radionuclides and to identify most suitable moss species as a biological indicator
    for atmospheric deposition contaminants. In this study, different species of moss Leucobryum
    aduncum, Campylopus serratus, Syrrhopodon ciliates and Vesicularia montagnei were collected in
    May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in
    Pontian, Johor. The activity concentrations of 210Po,
    210Pb and 210Po/210Pb in mosses were in the
    range of 76.81 ± 4.94 – 251.33 ± 16.33 Bq/kg dry wt., 54.37 ± 3.38 – 164.63 ± 11.64 Bq/kg dry wt.
    and 1.10 – 2.00, respectively. Meanwhile the ranges for those radionuclides in the surface soil
    were 33.53 ± 2.10 – 179.67 ± 12.15 Bq/kg dry wt., 20.55 ± 1.33 – 106.62 ± 6.64 Bq/kg dry wt. and
    1.61 – 2.44, respectively. Corresponding high ability of Leucobryum aduncum to accumulate more
    210Po and 210Pb, wide geographical distribution, most abundant and high CF, therefore, the
    findings can be concluded this species was the most suitable as a biological indicator for
    atmospheric deposition contaminants such as 210Po and 210Pb. Furthermore, it is clear the
    accumulation of 210Po and 210Pb in mosses might be supplied from various sources of atmospheric
    deposition such as coal-fired power plant operation, industrial, agriculture and fertilizer activities,
    burned fuel fossil and forest; and other potential sources. Meanwhile, the
    Matched MeSH terms: Fossils
  16. Zal U’yun Wan Mahmood, Mei, Wo Yii, Abdul Kadir Ishak
    MyJurnal
    This study was performed to observe the variation in the distribution of 210Po,210Pb and 210Po/210Pb activity ratio throughtheir vertical profile of the sediment cores takenat surrounding Sungai Linggi estuary. Five sediment cores were takenin February 2011 and were cutto an intervalof 2 cm layer. Activity concentrations of 210Po and 210Pb were determined using alpha radiochemical analysis and gamma direct measurement, respectively. Generally, the measured activity of 210Po, 210Pb and 210Po/210Pbwere in the ranges of 22.73 –139.06 Bqkg-1dw., 37.88 –176.24 Bqkg-1dw.and 0.23 –1.34, respectively. The variation in the distribution profile for the radionuclides are believed to be influencedby human activities such as agriculture, fertilizer, vehicles, burned fuel fossil and forest, industrialand others via river input from land-base.Other factor is due to organic mattercontent played importantrole as the geochemical carrier to transportthose radionuclides at study area. It was provedthat hasa strong correlation between the radionuclide distribution and the sedimentcomposition of organic matter.Furthermore, in those rangesreflectedthat 210Pb activities were higher than210Po with an activity ratio average of 0.79. This is probably due to dramatic increase of excess 210Pb supplied from atmospheric deposition, in situ decay of 226Ra and as a result of diagenetic remolibilazationof 210Pbin deeper layesof the sediment column. Thus, thosefactors are majorcontributions on thevariation of 210Po and 210Pb in the sediment core at surrounding Sungai Linggi estuary.
    Matched MeSH terms: Fossils
  17. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Fossils
  18. Vasconcelos TNC, Proença CEB, Ahmad B, Aguilar DS, Aguilar R, Amorim BS, et al.
    Mol Phylogenet Evol, 2017 04;109:113-137.
    PMID: 28069533 DOI: 10.1016/j.ympev.2017.01.002
    Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.
    Matched MeSH terms: Fossils
  19. Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ
    Mol Phylogenet Evol, 2018 05;122:59-79.
    PMID: 29410353 DOI: 10.1016/j.ympev.2018.01.014
    Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.
    Matched MeSH terms: Fossils/history
  20. Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Rüther PL, et al.
    Nature, 2019 10;574(7776):103-107.
    PMID: 31511700 DOI: 10.1038/s41586-019-1555-y
    The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.
    Matched MeSH terms: Fossils*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links