Displaying publications 1 - 20 of 189 in total

Abstract:
Sort:
  1. Lim SL, Ishak Ahmad, Azwan Mat Lazim
    Sains Malaysiana, 2015;44:779-785.
    The purpose of this study was to produce a novel pH sensitive hydrogel with superior thermal stability, composed of
    poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali
    and bleaching treatments followed by acid hydrolysis. PAA was then subjected to chemical cross-linking using the crosslinking
    agent (N,N-methylenebisacrylamide) in CNC suspension. The mixture was casted onto petri dish to obtain disc
    shape hydrogel. PAA/cellulose hydrogel with the same composition ratio were also prepared as control. The effect of
    reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH
    was studied. The obtained hydrogel was further subjected to different tests such as thermogravimetric analysis (TGA) to
    study the thermal behavior, Fourier transform infrared for functional group identification and swelling test for swelling
    behavior at different pH. The cross-linking of PAA was verified with FTIR with the absence of C=C double bond. In TGA
    test, PAA/CNC hydrogel showed significantly higher thermal stability compared with pure PAA hydrogel. The hydrogel
    obtained showed excellent pH sensitivity and experienced maximum swelling at pH7. The PAA/CNC hydrogel can be
    developed further as drug carrier
    Matched MeSH terms: Fourier Analysis
  2. Mousavi Z, Soofivand F, Esmaeili-Zare M, Salavati-Niasari M, Bagheri S
    Sci Rep, 2016 Feb 01;6:20071.
    PMID: 26832329 DOI: 10.1038/srep20071
    In this work, zinc chromite (ZnCr2O4) nanostructures have been synthesized through co-precipitation method. The effect of various parameters such as alkaline agent, pH value, and capping agent type was investigated on purity, particle size and morphology of samples. It was found that particle size and morphology of the products could be greatly influenced via these parameters. The synthesized products were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectra, X-ray energy dispersive spectroscopy (EDS), photoluminescence (PL) spectroscopy, diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometry (VSM). The superhydrophilicity of the calcined oxides was investigated by wetting experiments and a sessile drop technique which carried out at room temperature in air to determine the surface and interfacial interactions. Furthermore, the photocatalytic activity of ZnCr2O4 nanoparticles was confirmed by degradation of anionic dyes such as Eosin-Y and phenol red under UV light irradiation. The obtained ZnCr2O4 nanoparticles exhibit a paramagnetic behavior although bulk ZnCr2O4 is antiferromagnetic, this change in magnetic property can be ascribed to finite size effects.
    Matched MeSH terms: Fourier Analysis
  3. Saffor A, bin Ramli AR, Ng KH
    Australas Phys Eng Sci Med, 2003 Jun;26(2):39-44.
    PMID: 12956184
    Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio.
    Matched MeSH terms: Fourier Analysis
  4. Ahmad K, Yan Y, Bless D
    J Voice, 2012 Nov;26(6):751-9.
    PMID: 22633334 DOI: 10.1016/j.jvoice.2011.12.002
    A high proportion of the geriatric population suffers from presbylaryngis and presbyphonia; however, our knowledge of vibratory patterns in this population is almost nonexistent. In this study, we investigate the vocal fold vibratory patterns of healthy elderly females to determine which features or combination of them could best describe the geriatric voices.
    Matched MeSH terms: Fourier Analysis
  5. Tayyari F, Yusof F, Vymyslicky M, Tan O, Huang D, Flanagan JG, et al.
    Invest Ophthalmol Vis Sci, 2014 Dec;55(12):7716-25.
    PMID: 25335983 DOI: 10.1167/iovs.14-14430
    The purpose of this study was to determine the within-session variability and between-session repeatability of spectral Fourier-domain optical coherence tomography (Doppler FD-OCT) Doppler retinal blood flow measurements in young and elderly subjects.
    Matched MeSH terms: Fourier Analysis
  6. Maidur SR, Patil PS, Katturi NK, Soma VR, Ai Wong Q, Quah CK
    J Phys Chem B, 2021 Apr 22;125(15):3883-3898.
    PMID: 33830758 DOI: 10.1021/acs.jpcb.1c01243
    The structural, thermal, linear, and femtosecond third-order nonlinear optical (NLO) properties of two pyridine-based anthracene chalcones, (2E)-1-(anthracen-9-yl)-3-(pyridin-2-yl)prop-2-en-1-one (2PANC) and (2E)-1-(anthracen-9-yl)-3-(pyridin-3-yl)prop-2-en-1-one (3PANC), were investigated. These two chalcones were synthesized following the Claisen-Schmidt condensation method. Optically transparent single crystals were achieved using a slow evaporation solution growth technique. The presence of functional groups in these molecules was established by Fourier transform infrared and NMR spectroscopic data. The detailed solid-state structure of both chalcones was determined from the single-crystal X-ray diffraction data. Both crystals crystallized in the centrosymmetric triclinic space group P1̅ with the nuance of unit cell parameters. The crystals (labeled as 2PANC and 3PANC) have been found to be transparent optically [in the entire visible spectral region] and were found to be thermally stable up to 169 and 194 °C, respectively. The intermolecular interactions were investigated using the Hirshfeld surface analysis, and the band structures (highest occupied molecular orbital-lowest unoccupied molecular orbital, excited-state energies, global chemical reactivity descriptors, and molecular electrostatic potentials) were studied using density functional theory (DFT) techniques. The ultrafast third-order NLO properties were investigated using (a) Z-scan and (b) degenerate four-wave mixing (DFWM) techniques using ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ) from a Ti:sapphire laser amplifier. Two-photon-assisted reverse saturable absorption, self-focusing nonlinear refraction, optical limiting, and optical switching behaviors were witnessed from the Z-scan data. 3PANC demonstrated a stronger two-photon absorption coefficient, while 2PANC depicted a stronger nonlinear refractive index among the two. The time-resolved DFWM data demonstrated that the decay times of 2PANC and 3PANC were ∼162 and ∼180 fs, respectively. The second hyperpolarizability (γ) values determined by DFT, Z-scan, and DFWM were found to be in good correlation (with a magnitude of ∼10-34 esu). The ultrafast third-order NLO response, significant NLO properties, and thermal stability of these chalcones brands them as potential candidates for optical power limiting and switching applications.
    Matched MeSH terms: Fourier Analysis
  7. Ghazali SK, Adrus N, Majid RA, Ali F, Jamaluddin J
    Polymers (Basel), 2021 Feb 04;13(4).
    PMID: 33557118 DOI: 10.3390/polym13040487
    The elimination of mercury, low energy consumption, and low heat make the ultraviolet light-emitting diode (UV-LED) system emerge as a promising alternative to conventional UV-mercury radiation coating. Hence, a series of hydrophobic coatings based on urethane acrylate oligomer and fluorinated monomer via UV-LED photopolymerisation was designed in this paper. The presence of fluorine component at 1160 cm-1, 1235 cm-1, and 1296 cm-1 was confirmed by Fourier Transform Infra-Red spectroscopy. A considerably high degree C=C conversion (96-98%) and gel fraction (95-93%) verified the application of UV-LED as a new technique in radiation coating. It is well-accepted that fluorinated monomer can change the surface wettability as the water contact angle of the coating evolved from 88.4° to 121.2°, which, in turn, reduced its surface free energy by 70.5%. Hence, the hydrophobicity of the coating was governed by the migration of the fluorine component to the coating surface as validated by scanning electron and atomic force microscopies. However, above 4 phr of fluorinated monomer, the transparency of the cured coating examined by UV-visible spectroscopy experienced approximately a 16% reduction. In summary, the utilisation of UV-LED was a great initiative to develop green aspect in photopolymerisation, particularly in coating technology.
    Matched MeSH terms: Fourier Analysis
  8. Williams DP, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF, Koenig J
    Clin Physiol Funct Imaging, 2017 Nov;37(6):776-781.
    PMID: 26815165 DOI: 10.1111/cpf.12321
    Recently, research has validated the use of Polar® heart rate monitors as a tool to index heart rate variability (HRV). In the current investigation, we sought to evaluate the test-retest reliability of both time and frequency domain measures of HRV using the Polar® RS800CX™ . Continuous HRV data were collected as 60 nominally healthy adults underwent a resting and orthostatic stress test. We evaluated reproducibility by means of the interclass correlation coefficient for absolute agreement and consistency, and the standard error of measurement. We found moderate reliable 2-week test-retest reliability of HRV using the Polar® RS800CX™ , results that are in line with previous studies that have validated the stability of HRV using other methods of measurement (e.g. electrocardiogram). Additionally, when examining different methods of spectral density estimation, we found that using the auto-regressive transformation method provides the most stable indices of HRV. Taken together, our results suggest that the Polar® RS800CX™ is not only a valid method to record HRV, but also a reliable one, particularly when using the auto-regressive transformation method.
    Matched MeSH terms: Fourier Analysis
  9. Siti Fazlili Abdullah, Shahidan Radiman, Muhammad Azmi Abdul Hamid, Noor Baa’yah Ibrahim
    Sains Malaysiana, 2008;37:233-237.
    Oleic acid (OA) capped wolfram (VI) oxide, WO3 nanoparticles were chemically synthesized and characterized by means of Fourier Transform-Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The tribological properties of the capped WO3 nanoparticles as an additive in base oils were investigated using a four-ball machine. Results show that OA-capped WO3 nanoparticles are able to prevent water adsorption and capable of being dispersed stable in organic solvents which is base oils. The as-prepared capped WO3 nanoparticles have an average size of 15 nm. In addition, OA-capped WO3 nanoparticles as an additive in base oils perform good anti-wear (AW) and anti-friction (AF) properties owing to the formation of a boundary film.
    Matched MeSH terms: Fourier Analysis
  10. Rajabalaya R, Leen G, Chellian J, Chakravarthi S, David SR
    Pharmaceutics, 2016;8(3).
    PMID: 27589789 DOI: 10.3390/pharmaceutics8030027
    The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT) for the treatment of overactive bladder (OAB). Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE), vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%-91.68% and vesicle size was 253-845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.
    Matched MeSH terms: Fourier Analysis
  11. Razali MH, Ismail NA, Mat Amin KA
    Int J Biol Macromol, 2020 Jun 15;153:1117-1135.
    PMID: 31751725 DOI: 10.1016/j.ijbiomac.2019.10.242
    The synthesized titanium dioxide nanotubes (TiO2-NTs) were emerged as wound healing enhancer as well as exhibited significant wound healing activity on Sprague Dawley rats. In our present study, the blends of GG and TiO2-NTs bio-nanocomposite film was characterised by fourier transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, atomic force microscopy (AFM). The morphology of TiO2-NTs was investigated using transmission electron microscopy (TEM). The mechanical properties study shows that the GG + TiO2-NTs (20 w/w %) bio-nanocomposite film possessed the highest tensile strength and young modulus which are (4.56 ± 0.15) MPa and (68 ± 1.63) MPa, respectively. GG + TiO2-NTs (20 w/w %) also displays the highest antibacterial activity with (16 ± 0.06) mm, (16 ± 0.06) mm, (14 ± 0.06) mm, and (12 ± 0.25) mm inhibition zone were recorded against Staphylococcus aureus, Streptococcus, Escherichia coli, and Pseudomonas aeruginosa. The prepared bio-nanocomposite films have good biocompatibility against 3T3 mouse fibroblast cells and caused accelerated healing of open excision type wounds on Sprague Dawley rat model. The synergistic effects of bio-nanocomposite film like good swelling and WVTR properties, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.
    Matched MeSH terms: Fourier Analysis
  12. Chan SY, Choo WS, Young DJ, Loh XJ
    Polymers (Basel), 2016 Nov 18;8(11).
    PMID: 30974681 DOI: 10.3390/polym8110404
    Pectin is an anionic, water-soluble polymer predominantly consisting of covalently 1,4-linked α-d-galacturonic acid units. This naturally occurring, renewable and biodegradable polymer is underutilized in polymer science due to its insolubility in organic solvents, which renders conventional polymerization methods impractical. To circumvent this problem, cerium-initiated radical polymerization was utilized to graft methoxy-poly(ethylene glycol) methacrylate (mPEGMA) onto pectin in water. The copolymers were characterized by ¹H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA), and used in the formation of supramolecular hydrogels through the addition of α-cyclodextrin (α-CD) to induce crosslinking. These hydrogels possessed thixotropic properties; shear-thinning to liquid upon agitation but settling into gels at rest. In contrast to most of the other hydrogels produced through the use of poly(ethylene glycol) (PEG)-grafted polymers, the pectin-PEGMA/α-CD hydrogels were unaffected by temperature changes.
    Matched MeSH terms: Fourier Analysis
  13. Rohman A, Che Man YB
    Food Chem, 2011 Nov 15;129(2):583-588.
    PMID: 30634271 DOI: 10.1016/j.foodchem.2011.04.070
    Currently, the authentication of virgin coconut oil (VCO) has become very important due to the possible adulteration of VCO with cheaper plant oils such as corn (CO) and sunflower (SFO) oils. Methods involving Fourier transform mid infrared (FT-MIR) spectroscopy combined with chemometrics techniques (partial least square (PLS) and discriminant analysis (DA)) were developed for quantification and classification of CO and SFO in VCO. MIR spectra of oil samples were recorded at frequency regions of 4000-650cm-1 on horizontal attenuated total reflectance (HATR) attachment of FTIR. DA can successfully classify VCO and that adulterated with CO and SFO using 10 principal components. Furthermore, PLS model correlates the actual and FTIR estimated values of oil adulterants (CO and SFO) with coefficient of determination (R2) of 0.999.
    Matched MeSH terms: Fourier Analysis
  14. Ming NH, Ramesh S, Ramesh K
    Sci Rep, 2016 06 08;6:27630.
    PMID: 27273020 DOI: 10.1038/srep27630
    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.
    Matched MeSH terms: Fourier Analysis
  15. Ummi-Shafiqah, M.S., Fazilah, A., Karim, A.A., Kaur, B., Yusup, Y.
    MyJurnal
    Starch blend films made from sago and mung bean were prepared by casting with glycerol as the plasticizer and subsequently exposed to ultraviolet (UV) irradiation for 2 h. The films were characterized by thickness, moisture sorption isotherms, X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. All films produced were colorless while incorporation of glycerol resulted in more flexible and manageable films. Moisture sorption isotherms for all films showed sigmoidal shape and the control films showed slightly higher curve than treated films. While for X-ray analysis, the control and treated films for all formulations showed similar pattern, however for treated films showed more crystalline character. UV radiation showed affect on X-ray diffraction and sorption isotherms; however the UV radiation did not affect the spectra pattern of FTIR.
    Matched MeSH terms: Fourier Analysis
  16. Rozilah A, Jaafar CNA, Sapuan SM, Zainol I, Ilyas RA
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33171913 DOI: 10.3390/polym12112605
    Antibacterial sugar palm starch biopolymer composite films were developed and derived from renewable sources and inorganic silver nanoparticles (AgNPs) as main ingredients for antibacterial coatings. The composite films were produced by solution casting method and the mechanical and physicochemical properties were determined by tensile test, Fourier Transform Infrared (FTIR) analysis, thermal gravimetric analysis (TGA), antibacterial screening test and field emission scanning electron microscopy (FESEM) images. It was found that mechanical and antibacterial properties of biocomposite films were improved after the addition of AgNPs compared with the film without active metals. The weakness of neat biocomposite films was improved by incorporating inorganic AgNPs as a nanofiller in the films' matrix to avoid bacterial growth. The results showed that the tensile strength ranged between 8 kPa and 408 kPa and the elasticity modulus was between 5.72 kPa and 9.86 kPa. The addition of AgNPs in FTIR analysis decreased the transmittance value, caused small changes in the chemical structure, caused small differences in the intensity peaks, and produced longer wavelengths. These active films increased the degradation weight and decomposition temperature due to the more heat-stable AgNPs. Meanwhile, the average inhibited areas measured were between 7.66 and 7.83 mm (Escherichia coli), 7.5 and 8.0 mm (Salmonella cholerasuis), and 0.1 and 0.5 mm for Staphylococcus aureus. From the microscopic analysis, it was observed that the average size of all microbes for 1 wt% and 4 wt% AgNPs ranged from 0.57 to 2.90 mm. Overall, 3 wt% AgNP nanofiller was found to be the best composition that fulfilled all the mechanical properties and had better antimicrobial properties. Thus, the development of an organic-inorganic hybrid of antibacterial biopolymer composite films is suitable for antibacterial coatings.
    Matched MeSH terms: Fourier Analysis
  17. Ibrahim Lakin I, Abbas Z, Azis RS, Ibrahim NA, Abd Rahman MA
    Materials (Basel), 2020 Oct 14;13(20).
    PMID: 33066690 DOI: 10.3390/ma13204581
    Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6-22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) of the MWCNTs. The composites were characterized for complex permittivity using the coaxial probe at 8-12 GHz range and the transmission/reflection coefficients were measured through micro strip line. The dielectric permittivity measurements carried out at X-band frequency revealed that 22 wt.% MWCNTs nanocomposite display higher dielectric constant (ε') and dielectric loss (ε″) values of 4.23 and 0.65, respectively. A maximum absorption loss of 15.2 dB was obtained for the 22 wt.% nanocomposites at 11.75 GHz. This result suggests that PLA/OPEFB/MWCNTs composites are a promising cheap and lightweight material for the effective microwave absorption in the X-band frequency range.
    Matched MeSH terms: Fourier Analysis
  18. Mohd Hussin FNN, Attan N, Wahab RA
    Enzyme Microb Technol, 2020 May;136:109506.
    PMID: 32331714 DOI: 10.1016/j.enzmictec.2019.109506
    Biomass from oil palm frond leaves (OPFL) is an excellent reservoir of lignocellulosic material which full potential remains untapped. This study aimed to statistically optimize the covalent immobilization of Candida rugosa lipase (CRL) onto a ternary support comprised of OPFL derived nanocellulose (NC) and montmorillonite (MMT) in alginate (ALG) (CRL-ALG/NC/MMT). The coarser topology and the presence of characteristic spherical globules in the field emission scanning electron micrographs and atomic force micrographs, respectively, supported the existence of CRL on ALG/NC/MMT. In addition, amide peaks at 3478 and 1640 cm-1 in the fourier transform infrared spectra affirmed that CRL was covalently bonded to ALG/NC/MMT. The optimized Taguchi Design-assisted immobilization of CRL onto ALG/NC/MMT (7 h of immobilization, 35℃, pH 5, 7 mg/mL protein loading) gave a production yield of 92.89 % of ethyl levulinate (EL), as proven by gas chromatography-mass spectrometric ([M] +m/z 144, C7H12O3), FTIR and nuclear magnetic resonance (CAS-539-88-8) data. A higher optimal reaction temperature (50℃) and the reusability of CRL-ALG/NC/MMT for up to 9 esterification cycles substantiated the appreciable structural rigidification of the biocatalyst by ALG/NC/MMT, which improved the catalytic activity and thermal stability of the lipase.
    Matched MeSH terms: Fourier Analysis
  19. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY
    Molecules, 2011 Aug 25;16(9):7237-48.
    PMID: 21869751 DOI: 10.3390/molecules16097237
    In this research, silver nanoparticles (AgNPs) were synthesized in chitosan (Cts), Cts/gelatin and gelatin suspensions using a chemical reducing agent. Cts and gelatin were used as natural stabilizers and solid support, whereas AgNO(3) was used as the silver precursor. Sodium borohydride (NaBH(4)) was used as the reducing agent. The properties of AgNPs in Cts, Cts/gelatin and gelatin bionanocomposites (BNCs) were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions, surface topography and functional groups. All the samples were characterized by UV-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy.
    Matched MeSH terms: Fourier Analysis
  20. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Fourier Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links