Displaying publications 1 - 20 of 181 in total

Abstract:
Sort:
  1. Ali Z, Elamvazuthi I, Alsulaiman M, Muhammad G
    J Voice, 2016 Nov;30(6):757.e7-757.e19.
    PMID: 26522263 DOI: 10.1016/j.jvoice.2015.08.010
    BACKGROUND AND OBJECTIVE: Automatic voice pathology detection using sustained vowels has been widely explored. Because of the stationary nature of the speech waveform, pathology detection with a sustained vowel is a comparatively easier task than that using a running speech. Some disorder detection systems with running speech have also been developed, although most of them are based on a voice activity detection (VAD), that is, itself a challenging task. Pathology detection with running speech needs more investigation, and systems with good accuracy (ACC) are required. Furthermore, pathology classification systems with running speech have not received any attention from the research community. In this article, automatic pathology detection and classification systems are developed using text-dependent running speech without adding a VAD module.

    METHOD: A set of three psychophysics conditions of hearing (critical band spectral estimation, equal loudness hearing curve, and the intensity loudness power law of hearing) is used to estimate the auditory spectrum. The auditory spectrum and all-pole models of the auditory spectrums are computed and analyzed and used in a Gaussian mixture model for an automatic decision.

    RESULTS: In the experiments using the Massachusetts Eye & Ear Infirmary database, an ACC of 99.56% is obtained for pathology detection, and an ACC of 93.33% is obtained for the pathology classification system. The results of the proposed systems outperform the existing running-speech-based systems.

    DISCUSSION: The developed system can effectively be used in voice pathology detection and classification systems, and the proposed features can visually differentiate between normal and pathological samples.

    Matched MeSH terms: Fourier Analysis
  2. Ahmad K, Yan Y, Bless D
    J Voice, 2012 Nov;26(6):751-9.
    PMID: 22633334 DOI: 10.1016/j.jvoice.2011.12.002
    A high proportion of the geriatric population suffers from presbylaryngis and presbyphonia; however, our knowledge of vibratory patterns in this population is almost nonexistent. In this study, we investigate the vocal fold vibratory patterns of healthy elderly females to determine which features or combination of them could best describe the geriatric voices.
    Matched MeSH terms: Fourier Analysis
  3. Goh CH, Ng SC, Kamaruzzaman SB, Chin AV, Tan MP
    Medicine (Baltimore), 2017 Oct;96(42):e8193.
    PMID: 29049203 DOI: 10.1097/MD.0000000000008193
    The aim of this study was to determine the relationship between falls and beat-to-beat blood pressure (BP) variability.Continuous noninvasive BP measurement is as accurate as invasive techniques. We evaluated beat-to-beat supine and standing BP variability (BPV) using time and frequency domain analysis from noninvasive continuous BP recordings.A total of 1218 older adults were selected. Continuous BP recordings obtained were analyzed to determine standard deviation (SD) and root mean square of real variability (RMSRV) for time domain BPV and fast-Fourier transform low frequency (LF), high frequency (HF), total power spectral density (PSD), and LF:HF ratio for frequency domain BPV.Comparisons were performed between 256 (21%) individuals with at least 1 fall in the past 12 months and nonfallers. Fallers were significantly older (P = .007), more likely to be female (P = .006), and required a longer time to complete the Timed-Up and Go test (TUG) and frailty walk test (P ≤ .001). Standing systolic BPV (SBPV) was significantly lower in fallers compared to nonfallers (SBPV-SD, P = .016; SBPV-RMSRV, P = .033; SBPV-LF, P = .003; SBPV-total PSD, P = .012). Nonfallers had significantly higher supine to standing ratio (SSR) for SBPV-SD, SBPV-RMSRV, and SBPV-total PSD (P = .017, P = .013, and P = .009). In multivariate analyses, standing BPV remained significantly lower in fallers compared to nonfallers after adjustment for age, sex, diabetes, frailty walk, and supine systolic BP. The reduction in frequency-domain SSR among fallers was attenuated by supine systolic BP, TUG, and frailty walk.In conclusion, reduced beat-to-beat BPV while standing is independently associated with increased risk of falls. Changes between supine and standing BPV are confounded by supine BP and walking speed.
    Matched MeSH terms: Fourier Analysis
  4. Nik Zainuddin NAS, Muhammad H, Nik Hassan NF, Othman NH, Zakaria Y
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S768-S776.
    PMID: 33828376 DOI: 10.4103/jpbs.JPBS_262_19
    Introduction: Cervical cancer is a leading cause of death in women. Current cancer treatment comes with side effects. Clinacanthus nutans has been known traditionally to treat cancer. This study was aimed to characterize C. nutans standardized fraction (SF1) and to investigate its anticancer mechanism against SiHa cells.

    Materials and Methods: SF1 was produced by optimized methodology for bioassay-guided fractionation. Fourier transform infrared (FTIR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) were carried out to characterize the SF1. SF1 was screened for cytotoxicity activity toward HeLa, SiHa, and normal cells (NIH) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The anticancer mechanism of SF1 was evaluated toward SiHa cells, which showed highest cytotoxicity toward SF1 treatment. The mechanism includes cell cycle progression and protein expression, which was detected using specific antibody-conjugated fluorescent dye, p53-FITC, by flow cytometry.

    Results: Major constituents of SF1 were alkaloids with amines as functional group. SF1 showed highest cytotoxic activity against SiHa (half-maximal inhibitory concentration [IC50] < 10 µg/mL) compared to HeLa cells. Cytoselectivity of SF1 was observed with no IC50 detected on normal NIH cells. On flow cytometry analysis, SF1 was able to induce apoptosis on SiHa cells by arresting cell cycle at G1/S and upregulation of p53 protein.

    Conclusion: SF1 showed anticancer activity by inducing apoptosis through arrested G1/S cell cycle checkpoint-mediated mitochondrial pathway.

    Matched MeSH terms: Fourier Analysis
  5. Anand K, Abdul NS, Ghazi T, Ramesh M, Gupta G, Tambuwala MM, et al.
    ACS Omega, 2021 Jan 12;6(1):265-277.
    PMID: 33458478 DOI: 10.1021/acsomega.0c04461
    In this study, novel self-assembled carbazole-thiooctanoic acid nanoparticles (CTNs) were synthesized from amino carbazole (a mutagen) and thiooctanoic acid (an antioxidant). The nanoparticles were characterized using hyperspectral techniques. Then, the antiproliferative potential of CTNs was determined in HepG2 liver carcinoma cells. This study employed a solvent-antisolvent interaction method to synthesize a spherical CTN of size less than 50 nm. Moreover, CT was subsequently capped to gold nanoparticles (AuNPs) in the additional comparative studies. The CT derivative was synthesized from carbazole and lipoic acid by the amide bond formation reaction using a coupling agent. Furthermore, it was characterized using infrared (IR), 1H nuclear magnetic resonance, dynamic light scattering (DLS), and transmission electron microscopy techniques. The CT-capped gold nanoparticles (CTAuNPs) were prepared from CT, chloroauric acid, and NaBH4. The CTAuNPs were characterized using ultraviolet-visible, high-resolution TEM, DLS, and Fourier transform IR techniques. The cytotoxicity and apoptosis-inducing ability of both nanoparticles were determined in HepG2 cells. The results demonstrate that CTNs exhibit antiproliferative activity in the cancerous HepG2 cells. Moreover, molecular docking and molecular dynamics studies were conducted to explore the therapeutic potential of CT against human EGFR suppressor protein to gain more insights into the binding mode of the CT, which may show a significant role in anticancer therapy.
    Matched MeSH terms: Fourier Analysis
  6. Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, Shreaz S
    Food Res Int, 2017 10;100(Pt 1):14-27.
    PMID: 28873672 DOI: 10.1016/j.foodres.2017.07.036
    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN.
    Matched MeSH terms: Fourier Analysis
  7. Gan KB, Yahyavi ES, Ismail MS
    Technol Health Care, 2016 Sep 14;24(5):761-8.
    PMID: 27163300 DOI: 10.3233/THC-161161
    BACKGROUND: At the emergency triage center, assessment of the present of the danger signs and measurement of vital signs are measured according to the guidelines. The respiration rate is still posing a challenge to the doctor as it is impractical to use conventional devices. Attaching measurement devices to the patient will induce artificial measurements (self-awareness stress effects) besides being time-consuming. Currently, the medical officers visually count the number of times the chest movement in a minute, sometimes poses cultural challenges especially for female patients.

    OBJECTIVE: The main objective of this paper is to develop a robust algorithm to extract respiration rate using the contactless displacement sensor.

    METHODS: In this study, chest movements were used as an indicative of inspiration and expiration to measure respiratory rate using the contactless displacement sensor. The contactless optical signals were recorded from 32 healthy subjects in four different controlled breathing conditions: rest, coughing, talking and hand movement to obtain the motion artifacts that the patients may have in the emergency department. The Empirical mode decomposition (EMD) algorithm was used to derive continuous RR signal from the contactless optical signal.

    RESULTS: The analysis showed that there is a good correlation (0.9702) with RMSE of 0.33 breaths per minutes between the contact respiration rate and contactless respiration rate using empirical mode decomposition method.

    CONCLUSION: It can be concluded that the empirical mode decomposition method can extract the respiration rate of the contactless optical signal from chest movement.

    Matched MeSH terms: Fourier Analysis
  8. Tayyari F, Yusof F, Vymyslicky M, Tan O, Huang D, Flanagan JG, et al.
    Invest Ophthalmol Vis Sci, 2014 Dec;55(12):7716-25.
    PMID: 25335983 DOI: 10.1167/iovs.14-14430
    The purpose of this study was to determine the within-session variability and between-session repeatability of spectral Fourier-domain optical coherence tomography (Doppler FD-OCT) Doppler retinal blood flow measurements in young and elderly subjects.
    Matched MeSH terms: Fourier Analysis
  9. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Fourier Analysis
  10. Yuvaraj R, Murugappan M, Ibrahim NM, Sundaraj K, Omar MI, Mohamad K, et al.
    J Neural Transm (Vienna), 2015 Feb;122(2):237-52.
    PMID: 24894699 DOI: 10.1007/s00702-014-1249-4
    Parkinson's disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3-AF4, F7-F8, F3-F4, FC5-FC6, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities.
    Matched MeSH terms: Fourier Analysis
  11. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY
    Molecules, 2011 Aug 25;16(9):7237-48.
    PMID: 21869751 DOI: 10.3390/molecules16097237
    In this research, silver nanoparticles (AgNPs) were synthesized in chitosan (Cts), Cts/gelatin and gelatin suspensions using a chemical reducing agent. Cts and gelatin were used as natural stabilizers and solid support, whereas AgNO(3) was used as the silver precursor. Sodium borohydride (NaBH(4)) was used as the reducing agent. The properties of AgNPs in Cts, Cts/gelatin and gelatin bionanocomposites (BNCs) were studied in terms of their surface plasmon resonance, crystalline structure, average diameter size, particle distributions, surface topography and functional groups. All the samples were characterized by UV-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy.
    Matched MeSH terms: Fourier Analysis
  12. Bilgen M
    Australas Phys Eng Sci Med, 2010 Dec;33(4):357-66.
    PMID: 21110236 DOI: 10.1007/s13246-010-0039-z
    Homogenous strain analysis (HSA) was developed to evaluate regional cardiac function using tagged cine magnetic resonance images of heart. Current cardiac applications of HSA are however limited in accurately detecting tag intersections within the myocardial wall, producing consistent triangulation of tag cells throughout the image series and achieving optimal spatial resolution due to the large size of the triangles. To address these issues, this article introduces a harmonic phase (HARP) interference method. In principle, as in the standard HARP analysis, the method uses harmonic phases associated with the two of the four fundamental peaks in the spectrum of a tagged image. However, the phase associated with each peak is wrapped when estimated digitally. This article shows that special combination of wrapped phases results in an image with unique intensity pattern that can be exploited to automatically detect tag intersections and to produce reliable triangulation with regularly organized partitioning of the mesh for HSA. In addition, the method offers new opportunities and freedom for evaluating myocardial function when the power and angle of the complex filtered spectra are mathematically modified prior to computing the phase. For example, the triangular elements can be shifted spatially by changing the angle and/or their sizes can be reduced by changing the power. Interference patterns obtained under a variety of power and angle conditions were presented and specific features observed in the results were explained. Together, the advanced processing capabilities increase the power of HSA by making the analysis less prone to errors from human interactions. It also allows strain measurements at higher spatial resolution and multi-scale, thereby improving the display methods for better interpretation of the analysis results.
    Matched MeSH terms: Fourier Analysis
  13. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
    Matched MeSH terms: Fourier Analysis
  14. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
    Matched MeSH terms: Fourier Analysis
  15. Shyam Sunder R, Eswaran C, Sriraam N
    Comput Biol Med, 2006 Sep;36(9):958-73.
    PMID: 16026779
    In this paper, 3-D discrete Hartley transform is applied for the compression of two medical modalities, namely, magnetic resonance images and X-ray angiograms and the performance results are compared with those of 3-D discrete cosine and Fourier transforms using the parameters such as PSNR and bit rate. It is shown that the 3-D discrete Hartley transform is better than the other two transforms for magnetic resonance brain images whereas for the X-ray angiograms, the 3-D discrete cosine transform is found to be superior.
    Matched MeSH terms: Fourier Analysis
  16. Kamari A, Aljafree NF, Yusoff SN
    Int J Biol Macromol, 2016 Jul;88:263-72.
    PMID: 27041651 DOI: 10.1016/j.ijbiomac.2016.03.071
    In this study, an amphiphilic chitosan derivative namely N,N-dimethylhexadecyl carboxymethyl chitosan (DCMC) was synthesised and applied for the first time as a carrier agent for rotenone. The physical and chemical properties of DCMC were characterised by using Fourier Transform Infrared Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectrometer ((1)H NMR), CHN-O Elemental Analyser, Thermogravimetric Analyser (TGA) and Differential Scanning Calorimeter (DSC). DCMC was soluble in acidic (except pH 4), neutral and basic media with percent of transmittance (%T) values ranged from 67.2 to 99.4%. The critical micelle concentration (CMC) was determined as 0.095mg/mL. Transmission Electron Microscopy (TEM) analysis confirmed that DCMC has formed self-aggregates and exhibited spherical shape with the size of 65.5-137.0nm. The encapsulation efficiency (EE) and loading capacity (LC) of DCMC micelles with different weight ratios (DCMC:rotenone; 5:1, 50:1 and 100:1) were determined by using High Performance Liquid Chromatography (HPLC). The weight ratio of 100:1 gave the best EE with the value of more than 95.0%. DCMC micelles performed an excellent ability to control the release of rotenone, of which 99.0% of rotenone was released within 48h. Overall, DCMC has several key features to be an effective carrier agent for pesticide formulations.
    Matched MeSH terms: Fourier Analysis
  17. Mousavi Z, Soofivand F, Esmaeili-Zare M, Salavati-Niasari M, Bagheri S
    Sci Rep, 2016 Feb 01;6:20071.
    PMID: 26832329 DOI: 10.1038/srep20071
    In this work, zinc chromite (ZnCr2O4) nanostructures have been synthesized through co-precipitation method. The effect of various parameters such as alkaline agent, pH value, and capping agent type was investigated on purity, particle size and morphology of samples. It was found that particle size and morphology of the products could be greatly influenced via these parameters. The synthesized products were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectra, X-ray energy dispersive spectroscopy (EDS), photoluminescence (PL) spectroscopy, diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometry (VSM). The superhydrophilicity of the calcined oxides was investigated by wetting experiments and a sessile drop technique which carried out at room temperature in air to determine the surface and interfacial interactions. Furthermore, the photocatalytic activity of ZnCr2O4 nanoparticles was confirmed by degradation of anionic dyes such as Eosin-Y and phenol red under UV light irradiation. The obtained ZnCr2O4 nanoparticles exhibit a paramagnetic behavior although bulk ZnCr2O4 is antiferromagnetic, this change in magnetic property can be ascribed to finite size effects.
    Matched MeSH terms: Fourier Analysis
  18. Williams DP, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF, Koenig J
    Clin Physiol Funct Imaging, 2017 Nov;37(6):776-781.
    PMID: 26815165 DOI: 10.1111/cpf.12321
    Recently, research has validated the use of Polar® heart rate monitors as a tool to index heart rate variability (HRV). In the current investigation, we sought to evaluate the test-retest reliability of both time and frequency domain measures of HRV using the Polar® RS800CX™ . Continuous HRV data were collected as 60 nominally healthy adults underwent a resting and orthostatic stress test. We evaluated reproducibility by means of the interclass correlation coefficient for absolute agreement and consistency, and the standard error of measurement. We found moderate reliable 2-week test-retest reliability of HRV using the Polar® RS800CX™ , results that are in line with previous studies that have validated the stability of HRV using other methods of measurement (e.g. electrocardiogram). Additionally, when examining different methods of spectral density estimation, we found that using the auto-regressive transformation method provides the most stable indices of HRV. Taken together, our results suggest that the Polar® RS800CX™ is not only a valid method to record HRV, but also a reliable one, particularly when using the auto-regressive transformation method.
    Matched MeSH terms: Fourier Analysis
  19. Saffor A, bin Ramli AR, Ng KH
    Australas Phys Eng Sci Med, 2003 Jun;26(2):39-44.
    PMID: 12956184
    Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio.
    Matched MeSH terms: Fourier Analysis
  20. Wan Mat Khalir WKA, Shameli K, Jazayeri SD, Othman NA, Che Jusoh NW, Hassan NM
    Front Chem, 2020;8:620.
    PMID: 32974269 DOI: 10.3389/fchem.2020.00620
    Silver nanoparticles (Ag-NPs) have been established as antibacterial nanoparticles and have been innovatively developed to overcome the occurrence of antibiotic resistance in the environment. In this study, an environmentally friendly and easy method of the biosynthesis of Ag-NPs plants, mediated by aqueous extract stem extract of Entada spiralis (E. spiralis), was successfully developed. The E. spiralis/Ag-NPs samples were characterized using spectroscopy and the microscopic technique of UV-visible (UV-vis), X-ray Diffraction (XRD), Field Emission Transmission Electron Microscope (FETEM), zeta potential, and Fourier Transform Infrared (FTIR) analyses. Surface Plasmon Resonance (SPR) absorption at 400-450 nm in the UV-vis spectra established the formation of E. spiralis/Ag-NPs. The crystalline structure of E. spiralis/Ag-NPs was displayed in the XRD analysis. The small size, around 18.49 ± 4.23 nm, and spherical shape of Ag-NPs with good distribution was observed in the FETEM image. The best physicochemical parameters on Ag-NPs biosynthesis using E. spiralis extract occurred at a moderate temperature (~52.0°C), 0.100 M of silver nitrate, 2.50 g of E. spiralis dosage and 600 min of stirring reaction time. The antibacterial activity was tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Proteus vulgaris using an antibacterial disk diffusion assay. Based on the results, it is evident that E. spiralis/Ag-NPs are susceptible to all the bacteria and has promising potential to be applied in both the industry and medical fields.
    Matched MeSH terms: Fourier Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links