Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Al-Japairai KAS, Alkhalidi HM, Mahmood S, Almurisi SH, Doolaanea AA, Al-Sindi TA, et al.
    ACS Omega, 2020 Dec 22;5(50):32466-32480.
    PMID: 33376884 DOI: 10.1021/acsomega.0c04588
    Telmisartan suffers from low oral bioavailability due to its poor water solubility. The research work presents a formulation of solid dispersed (SD) telmisartan formulation as a ternary mixture of a drug, a polymeric carrier (poly(vinylpyrrolidone) (PVP) K30), and an alkalizer (Na2CO3). The preparation method, which was lyophilization of an aqueous solution containing the ingredients, was free from any organic solvent. The developed SD formulations resulted in a significant improvement in in vitro dissolution (>90% drug dissolution in 15 min) compared to pure telmisartan. Solid-state characterization by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies indicated the conversion of crystalline telmisartan into an amorphous form. Fourier transform infrared (FTIR) spectroscopy revealed the drug-polymer interaction that was responsible for reducing the chances of recrystallization. A short-term stability study showed that selected SD formulations were stable in terms of in vitro dissolution and retained their amorphous structure in ambient and accelerated conditions over 2 months. Selected formulations (drug/PVP K30/Na2CO3 as 1:1:2 or 1:2:2 weight ratio) resulted in >2.48 times relative oral bioavailability compared to marketed formulations. It was considered that the incorporation of an alkalizer and a hydrophilic polymer, and amorphization of telmisartan by lyophilization, could enhance in vitro dissolution and improve oral bioavailability.
    Matched MeSH terms: Freeze Drying
  2. Pal A, Roy S, Kumar A, Mahmood S, Khodapanah N, Thomas S, et al.
    ACS Omega, 2020 Aug 18;5(32):19968-19977.
    PMID: 32832751 DOI: 10.1021/acsomega.0c01228
    This present study investigated the effect of Captisol, a chemically modified cyclodextrin, on the in vitro dissolution of glimepiride. We prepared glimepiride-Captisol complexes of different mass ratios (1:1, 1:2, and 1:3 w/w) by a physical mixing or freeze-drying technique, and found that complexation with Captisol enhanced the water solubility of glimepiride. Molecular docking and dynamic simulation predicted complex formation; at the same time, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, and scanning electron microscope indicated molecular interactions that support complexation. We also found that an inclusion complex was better than a physical mixture in enhancing the complexation of glimepiride with Captisol and enhancing water solubility. Phase solubility study of the glimepiride-Captisol complex showed an AL-type profile, implying the formation of a 1:1 inclusion complex. The study also revealed that pH influenced the stability of the complex because the stability constant of the glimepiride-Captisol complex was higher in distilled water of pH ∼6.0 than in phosphate buffer of pH 7.2.
    Matched MeSH terms: Freeze Drying
  3. Phing PL, Abdullah A, Sin CL, Foong SCY
    Acta Sci Pol Technol Aliment, 2022 2 18;21(1):111-122.
    PMID: 35174693 DOI: 10.17306/J.AFS.0901
    BACKGROUND: Bintangor oranges are a mandarin species that is abundant in vitamin C and beta-carotene. However, due to its short shelf life, the fresh fruit can be converted into powder form, which is comparatively more stable.

    METHODS: This study compares the effects of spray drying, freeze drying, drum drying, vacuum oven drying, and convection oven drying on the physicochemical properties of Bintangor orange powder, including vitamin C and total carotenoid content. The physicochemical properties analyzed for the powders were color analysis, moisture content, water activity, hygroscopicity, degree of caking, wettability, flowability, water solubility index, and bulk density.

    RESULTS: Our results showed that freeze dried and convection oven dried powders retained their color so that the powder was the same as the original puree. All powders used in this showed an acceptable moisture content level, with a range of 2.11–2.31%. Spray dried and drum dried powders had the lowest value of moisture content and water activity. Moreover, spray dried powders showed the lowest value in hygroscopicity and bulk density and took the shortest time to wet the powder. The highest solubility and flowability properties were 12.99%, 0.39 g/mL, 18.39 s, 96.08%, and 19.17°, respectively. However, the freeze drying method retained the highest value for both nutritional pigments of vitamin C and total carotenoid content, 18.31 mg/g and 91.32 μg/g, respectively.

    CONCLUSIONS: Freeze drying is the most suitable drying method with favorable powder properties compared to spray drying, drum drying, vacuum oven drying and convection oven drying.

    Matched MeSH terms: Freeze Drying
  4. Chang LS, Lau KQ, Tan CP, Yusof YA, Nyam KL, Pui LP
    Acta Sci Pol Technol Aliment, 2021 11 2;20(4):417-421.
    PMID: 34724366 DOI: 10.17306/J.AFS.0903
    BACKGROUND: ‘Kedondong’ fruit is regarded as an exotic fruit that is gaining popularity due to its deliciousness and pleasant flavour. However, this fruit has a short shelf life, leading to problems with postharvest loss. In order to prevent losses, the fruit could be produced as a value-added product. In this study, the ‘kedondong’ fruit was preserved by drying into powder using different drying methods.

    METHODS: The kedondong powder was dried using five methods: convection oven drying, vacuum drying, spray drying, drum drying and freeze drying. The physical properties, flowability and DPPH radical scavenging ability of dried kedondong powder were examined.

    RESULTS: Spray-dried powder provided the significantly (p ≤ 0.05) highest process yield, which was 54.93%. All the powder produced had a low moisture content (3.03 to 5.66%) and water activity (0.19–0.37). Visually, whitish and fine powders were observed on spray-dried and freeze-dried samples, while convection oven-dried and vacuum-dried powder appeared yellowish and coarse. The pH of the reconstituted powders varied from 2.71 to 2.83, where drum-dried powder was the most acidic. Spray-dried powder showed the highest wettability and shortest dissolution time, which was 172.65 s and 10.55 s, respectively. With the exception of drum-dried powder, all the dried powders were classified as non-caking powders. The bulk and tapped density of the powders ranged from 0.32 to 0.70 g/mL and 0.38 to 0.86 g/mL, respectively. Vacuum-dried powder had very good flowability, convection oven-dried and drum-dried powder had good flowability, while spray-dried and drum-dried powder had fair flowability. Antioxidant assay showed that freeze-dried powder exhibited the highest free radical scavenging activity (IC50 = 701.29 μg/mL).

    CONCLUSIONS: This study indicates that spray-dried kedondong powder has great potential in the food industry due to its high process yield and better powder quality. Meanwhile, freeze drying best preserved the antioxidant properties of the powder, which could potentially be used as a functional ingredient as a result. This study is important for the fruit processing industry as it offers an alternative for the farmer to produce kedondong fruit powder because the fruit has a short shelf life. Converting the fruit into powder can diversify the resulting produce into different applications, such as fruit juice, beverages, jam and other food products.

    Matched MeSH terms: Freeze Drying
  5. Khoramnia A, Abdullah N, Liew SL, Sieo CC, Ramasamy K, Ho YW
    Anim Sci J, 2011 Feb;82(1):127-35.
    PMID: 21269371 DOI: 10.1111/j.1740-0929.2010.00804.x
    A rotatable central composite design (CCD) was used to study the effect of cryoprotectants (skim milk, sucrose and lactose) on the survival rate of a probiotic Lactobacillus strain, L. reuteri C10, for poultry, during freeze-drying and storage. Using response surface methodology, a quadratic polynomial equation was obtained for response value by multiple regression analyses: Y = 8.59546-0.01038 X(1)-0.09382 X(2)-0.07771 X(3)-0.054861 X(1)(2)-0.04603 X(3)(2)-0.10938 X(1)X(2). Based on the model predicted, sucrose exerted the strongest effect on the survival rate. At various combinations of cryoprotectants, the viability loss of the cells after freeze-drying was reduced from 1.65 log colony forming units (CFU)/mL to 0.26-0.66 log CFU/mL. The estimated optimum combination for enhancing the survival rate of L. reuteri C10 was 19.5% skim milk, 1% sucrose and 9% lactose. Verification experiments confirmed the validity of the predicted model. The storage life of freeze-dried L. reuteri C10 was markedly improved when cryoprotectants were used. At optimum combination of the cryoprotectants, the survival rates of freeze-dried L. reuteri C10 stored at 4°C and 30°C for 6 months were 96.4% and 73.8%, respectively. Total viability loss of cells which were not protected by cryoprotectants occurred after 12 and 8 weeks of storage at 4°C and 30°C, respectively.
    Matched MeSH terms: Freeze Drying*
  6. Baharuddin, N.A., Kamin, S., Samsuddin, A.R.
    Ann Dent, 2005;12(1):-.
    MyJurnal
    The aim of this study was to determine the effectiveness of demineralized freeze-dried bone xenograft (DFDBBX) in minimizing post-surgical recession in moderate to advanced adult periodontitis in patients. Nine patients with a total of eighteen intrabony defects were matched for the tooth type, location of defects and periodontal pocket depth (5 to 7mm). Following an initial nonsurgical treatment, recession at defects indicated for surgery was measured pre-operatively. Surgical treatment was carried out by split mouth design, where the test sites were assigned DFDBBX and the control sites were subjected to debridement without the use of DFDBBX. Recessions were measured at 3 months, 6 months and 9 months post-operatively. The results showed no statistically significant difference in mean recession at 3, 6 and 9 months post-operatively compared to baseline for both test and control groups. Thus, DFDBBX was ineffective in minimizing recession on patients with moderate to severe periodontitis, as compared to surgical debridement alone.
    Matched MeSH terms: Freeze Drying
  7. Baharuddin, N.A., Kamin, S., Samsuddin, A.R.
    Ann Dent, 2003;10(1):-.
    MyJurnal
    This study evaluated the effectiveness of demineralized freeze-dried bone xenograft in reducing post-surgical pocket depth in moderate to advanced adult periodontitis in patients. Nine patients with a total of eighteen intrabony defects were selected for this study. The bony defects were matched for tooth type, location and pocket depth. Following an initial non-surgical treatment, only pockets of 5 to 7 mm deep were indicated for surgery. Periodontal pockets were measured pre-operatively and at 3, 6 and 9 months post-surgically. The study protocol included a split mouth design, where surgical treatment was carried out at both test and control sites. The test sites were assigned demineralized freeze-dried bone xenograft and the control sites were subjected to debridement alone without the use of demineralized freeze-dried bone xenograft. The results from this study showed a statistically significant difference in the mean pocket depth at 6 and 9 months post-operatively for both test and control groups, but there was no statistically significant difference at 3 months. In conclusion, demineralized freeze-dried bone xenograft was ineffective in reducing periodontal pocket depth in patients with moderate to severe periodontitis, as compared to surgical debridement alone.
    Matched MeSH terms: Freeze Drying
  8. Mediani A, Abas F, Tan CP, Khatib A
    Antioxidants (Basel), 2014 May 07;3(2):358-70.
    PMID: 26784876 DOI: 10.3390/antiox3020358
    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.
    Matched MeSH terms: Freeze Drying
  9. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Freeze Drying
  10. Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Norahmad NA, Muhammad A, Ho TCD, et al.
    BMC Complement Altern Med, 2018 Dec 05;18(1):320.
    PMID: 30518360 DOI: 10.1186/s12906-018-2390-7
    BACKGROUND: Carica papaya leaf juice (CPLJ) was well known for its thrombocytosis activity in rodents and dengue patients. However, the effect of CPLJ treatment on other parameters that could contribute to dengue pathogenesis such as nonstructural protein 1 (NS1) production and viremia level have never been highlighted in any clinical and in vivo studies. The aim of this study is to investigate the effect of freeze-dried CPLJ treatment on NS1 and viremia levels of dengue fever mouse model.

    METHODS: The dengue infection in mouse model was established by inoculation of non-mouse adapted New Guinea C strain dengue virus (DEN-2) in AG129 mice. The freeze-dried CPLJ compounds were identified by Ultra-High Performance Liquid Chromatography High Resolution Accurate Mass Spectrometry analysis. The infected AG129 mice were orally treated with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ, starting on day 1 post infection for 3 consecutive days. The blood samples were collected from submandibular vein for plasma NS1 assay and quantitation of viral RNA level by quantitative reverse transcription PCR.

    RESULTS: The AG129 mice infected with dengue virus showed marked increase in the production of plasma NS1, which was detectable on day 1 post infection, peaked on day 3 post-infection and started to decline from day 5 post infection. The infection also caused splenomegaly. Twenty-four compounds were identified in the freeze-dried CPLJ. Oral treatment with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ did not affect the plasma NS1 and dengue viral RNA levels. However, the morbidity level of infected AG129 mice were slightly decreased when treated with freeze-dried CPLJ.

    CONCLUSION: Oral treatment of 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ at the onset of viremia did not affect the plasma NS1 and viral RNA levels in AG129 mice infected with non-mouse adapted New Guinea C strain dengue virus.

    Matched MeSH terms: Freeze Drying
  11. Norahmad NA, Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Sastu UR, Muhammad A, et al.
    BMC Complement Altern Med, 2019 Feb 11;19(1):44.
    PMID: 30744623 DOI: 10.1186/s12906-019-2438-3
    BACKGROUND: Carica papaya leaves have been used for traditional treatment of dengue fever and have been reported to exhibit an immunomodulatory activity by affecting the level of cytokine production in vitro and in vivo. Due to the lack of adequate in vivo evidence in dengue disease model, the present study was initiated to screen and identify the cytokines affected by freeze-dried C. papaya leaf juice (FCPLJ) treatment in AG129 mice infected with DEN-2 dengue virus.

    METHODS: The AG129 mice were fed orally with FCPLJ for 3 consecutive days after 24 h of dengue virus inoculation. Plasma cytokines were screened by using ProcartaPlex immunoassay. The gene expression in the liver was analyzed by using RT2 Profiler PCR Array.

    RESULTS: The results showed that FCPLJ treatment has increased the plasma CCL2/MCP-1 level during peak of viremia. Gene expression study has identified 8 inflammatory cytokine genes which were downregulated in the liver of infected AG129 mice treated with FCPLJ. The downregulated inflammatory cytokine genes were CCL6/MRP-1, CCL8/MCP-2, CCL12/MCP-5, CCL17/TARC, IL1R1, IL1RN/IL1Ra, NAMPT/PBEF1 and PF4/CXCL4.

    CONCLUSION: The findings indicated the possible immunomodulatory role of FCPLJ during dengue virus infection in AG129 mice.

    Matched MeSH terms: Freeze Drying
  12. Sim JH, Kamaruddin AH
    Bioresour Technol, 2008 May;99(8):2724-35.
    PMID: 17697778
    Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.
    Matched MeSH terms: Freeze Drying
  13. Tang HW, Abbasiliasi S, Murugan P, Tam YJ, Ng HS, Tan JS
    Biosci Biotechnol Biochem, 2020 Sep;84(9):1913-1920.
    PMID: 32448058 DOI: 10.1080/09168451.2020.1770572
    The aims of this study were to compare the effectiveness of different drying methods and to investigate the effects of adding a series of individual protectant such as skim milk, sucrose, maltodextrin, and corn starch for preserving Lactobacillus acidophilus FTDC 3081 cells during spray and freeze-drying and storage at different temperatures. Results showed a remarkable high survival rate of 70-80% immediately after spray- and freeze-drying in which the cell viability retained at the range of 109 to 1010 CFU/mL. After a month of storage, maltodextrin showed higher protective ability on both spray- and freeze-dried cells as compared to other protective agents at 4°C, 25°C, and 40°C. A complete loss in viability of spray-dried L. acidophilus FTDC 3081 was observed after a month at 40°C in the absence of protective agent.
    Matched MeSH terms: Freeze Drying*
  14. Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T
    Cell Tissue Bank, 2011 Feb;12(1):59-70.
    PMID: 19953328 DOI: 10.1007/s10561-009-9164-x
    This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
    Matched MeSH terms: Freeze Drying
  15. Mansor A, Ariffin AF, Yusof N, Mohd S, Ramalingam S, Md Saad AP, et al.
    Cell Tissue Bank, 2023 Mar;24(1):25-35.
    PMID: 35610332 DOI: 10.1007/s10561-022-10013-9
    Bone processing and radiation were reported to influence mechanical properties of cortical bones due in part to structural changes and denaturation of collagen composition. This comparative study was to determine effects of bone processing on mechanical properties and organic composition, and to what extent the radiation damaging after each processing. Human femur cortical bones were processed by freezing, freeze-drying and demineralisation and then gamma irradiated at 5, 15, 20, 25 and 50 kGy. In the compression test, freeze drying significantly decreased the Young's Modulus by 15%, while demineralisation reduced further by 90% (P 
    Matched MeSH terms: Freeze Drying
  16. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Chem Commun (Camb), 2019 Jun 11.
    PMID: 31184357 DOI: 10.1039/c9cc02812a
    We report a one-step emulsification and rapid freeze-drying process to develop a curcumin-ionic liquid (CCM-IL) complex that could be readily dispersed in water with a significantly enhanced solubility of ∼8 mg mL-1 and half-life (t1/2) of ∼260 min compared with free CCM (solubility ∼30 nM and t1/2 ∼ 20 min). This process using an IL consisting of a long chain carbon backbone as a surfactant, may provide an alternative way of enhancing the solubility of poorly water-soluble drugs.
    Matched MeSH terms: Freeze Drying
  17. Mirhosseini H, Amid BT
    Chem Cent J, 2013 Jan 04;7(1):1.
    PMID: 23289739 DOI: 10.1186/1752-153X-7-1
    BACKGROUND: A natural carbohydrate biopolymer was extracted from the agricultural biomass waste (durian seed). Subsequently, the crude biopolymer was purified by using the saturated barium hydroxide to minimize the impurities. Finally, the effect of different drying techniques on the flow characteristics and functional properties of the purified biopolymer was investigated. The present study elucidated the main functional characteristics such as flow characteristics, water- and oil-holding capacity, solubility, and foaming capacity.

    RESULTS: In most cases except for oven drying, the bulk density decreased, thus increasing the porosity. This might be attributed to the increase in the inter-particle voids of smaller sized particles with larger contact surface areas per unit volume. The current study revealed that oven-dried gum and freeze-dried gum had the highest and lowest compressibility index, thus indicating the weakest and strongest flowability among all samples. In the present work, the freeze-dried gum showed the lowest angle of repose, bulk, tapped and true density. This indicates the highest porosity degree of freeze dried gum among dried seed gums. It also exhibited the highest solubility, and foaming capacity thus providing the most desirable functional properties and flow characteristics among all drying techniques.

    CONCLUSION: The present study revealed that freeze drying among all drying techniques provided the most desirable functional properties and flow characteristics for durian seed gum.

    Matched MeSH terms: Freeze Drying
  18. Oslan SNH, Halim M, Ramle NA, Saad MZ, Tan JS, Kapri MR, et al.
    Cryobiology, 2017 12;79:1-8.
    PMID: 29037980 DOI: 10.1016/j.cryobiol.2017.10.004
    The efficacy of attenuated strain of gdhA derivative Pasteurella multocida B:2 mutant as a live vaccine to control haemorrhagic septicaemia (HS) disease in cattle and buffaloes has been demonstrated. In order to use P. multocida B:2 mutant as a commercial product, it is essential to optimise its formulation for high viability and stability of the live cells. The effectiveness of freeze-drying process using different protective agent formulations for improving cells viability was explored. Sugar and nitrogen compounds were used as protective agents in freeze-drying and the capability of these compounds in maintaining the viability of mutant P. multocida B:2 during subsequent storage was investigated. A complete loss in viability of freeze-dried mutant P. multocida B:2 was monthly observed until 6-12 months of storage at -30 °C, 4 °C and 27 °C when nitrogen compound or no protective agent was added. Trehalose and sucrose showed significantly high survival rate of 93-95% immediately after freeze-drying and the viability was retained during the subsequent storage at -30 °C and 4 °C. A smooth cell surface without any cell-wall damage was observed for the cells formulated with trehalose under scanning electron micrograph. This study presented a freeze-drying process generating a dried live attenuated vaccine formulation with high stability for commercial applications.
    Matched MeSH terms: Freeze Drying/methods*
  19. Aziah I, Ravichandran M, Ismail A
    Diagn Microbiol Infect Dis, 2007 Dec;59(4):373-7.
    PMID: 17964105
    Conventional polymerase chain reaction (PCR) testing requires many pipetting steps and has to be transported and stored in cold chain. To overcome these limitations, we designed a ready-to-use PCR test for Salmonella typhi using PCR reagents, primers against the ST50 gene of S. typhi, a built-in internal amplification control (IAC), and gel loading dye mixed and freeze-dried in a single tube. The 2-step dry-reagent-based assay was used to amplify a 1238-bp target gene and an 810-bp IAC gene from 73 BACTEC blood culture broths (33 true positives for S. typhi and 40 true negatives for non-S. typhi). The sensitivity, specificity, positive predictive value, and negative predictive value of the PCR assay were 87.9%, 100%, 100%, and 90.9%, respectively. We suggest that this rapid 2-step PCR test could be used for the rapid diagnosis of typhoid fever.
    Matched MeSH terms: Freeze Drying/methods*
  20. Rezvanian M, Tan CK, Ng SF
    Drug Dev Ind Pharm, 2016 Dec;42(12):2055-2062.
    PMID: 27237190
    Wafers are an established drug delivery system for application to suppurating wounds. They can absorb wound exudates and are converted into a gel, offering a moist environment that is vital for wound healing. Simvastatin-loaded lyophilized wafers were developed using sodium carboxymethyl cellulose (CMC) and methyl cellulose (MC) and evaluated for their potential in the management of chronic wounds. Simvastatin (SIM) was chosen as the model drug since it is known to accelerate wound healing by promoting angiogenesis and lymphangiogenesis. Pre-formulation studies were carried out with CMC, MC, and a mixture of CMC and MC. Wafers obtained from aqueous gels of 3% CMC and blend of CMC-MC in the % weight ratio of 2:1 and 1.5:1.5 were selected for further analysis. The formulated wafers were characterized by microscopic examination, texture analysis, hydration test, rheological studies, FTIR spectroscopy, water vapor transmission and drug release test. Among the selected formulations, simvastatin-loaded CMC-MC (2:1) wafers exhibited the most desired characteristics for wound dressing application, such as good flexibility, hardness, sponginess, and viscosity. It showed a sustained drug release, which is desirable in wound healing, and was more appropriate for suppurating wounds. In conclusion, simvastatin-loaded CMC-MC (2:1) wafers showing potential for wound dressing applications were successfully developed.
    Matched MeSH terms: Freeze Drying
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links