Displaying publications 1 - 20 of 267 in total

Abstract:
Sort:
  1. Munian K, Ramli FF, Othman N, Mahyudin NAA, Sariyati NH, Abdullah-Fauzi NAF, et al.
    Mol Ecol Resour, 2024 May;24(4):e13936.
    PMID: 38419264 DOI: 10.1111/1755-0998.13936
    The approach of combining cost-effective nanopore sequencing and emerging environmental DNA (eDNA) metabarcoding could prove to be a promising tool for biodiversity documentation, especially in Malaysia. Given the substantial funding constraints in recent years, especially in relation to the country's biodiversity, many researchers have been limited to conduct restricted research without extended monitoring periods, potentially hindering comprehensive surveys and could compromise the conservation efforts. Therefore, the present study aimed to evaluate the application of eDNA metabarcoding on freshwater fish using short reads generated through nanopore sequencing. This assessment focused on species detection in three selected rivers within the Endau Rompin Landscape in Malaysia. Additionally, the study compared levels of species detection between eDNA metabarcoding and conventional sampling methods, examined the effectiveness of primer choice, and applied both metabarcoding and shotgun sequencing to the eDNA approach. We successfully identified a total of 22 and 71 species with an identification threshold of >97% and >90%, respectively, through the MinION platform. The eDNA metabarcoding approach detected over 13% more freshwater fish species than when the conventional method was used. Notably, the distinction in freshwater fish detection between eDNA primers for 12S rRNA and cytochrome oxidase I was insignificant. The cost for eDNA metabarcoding proved to be more effective compared to conventional sampling with cost reduction at 33.4%. With favourable cost-effectiveness and increased species detection, eDNA metabarcoding could complement existing methods, enhance holistic diversity documentation for targeted habitats and facilitate effective conservation planning.
    Matched MeSH terms: Fresh Water
  2. Hamid N, Junaid M, Sultan M, Yoganandham ST, Chuan OM
    Water Res, 2024 Feb 15;250:121044.
    PMID: 38154338 DOI: 10.1016/j.watres.2023.121044
    Due to increasing regulations on the production and consumption of legacy per- and polyfluoroalkyl substances (PFAS), the global use of PFAS substitutes increased tremendously, posing serious environmental risks owing to their bioaccumulation, toxicity, and lack of removal strategies. This review summarized the spatial distribution of alternative PFAS and their ecological risks in global freshwater and marine ecosystems. Further, toxicological effects of novel PFAS in various freshwater and marine species were highlighted. Moreover, degradation mechanisms for alternative PFAS removal from aquatic environments were compared and discussed. The spatial distribution showed that 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES, also known as F-53B) was the most dominant emerging PFAS found in freshwater. Additionally, the highest levels of PFBS and PFBA were observed in marine waters (West Pacific Ocean). Moreover, short-chain PFAS exhibited higher concentrations than long-chain congeners. The ecological risk quotients (RQs) for phytoplankton were relatively higher >1 than invertebrates, indicating a higher risk for freshwater phytoplankton species. Similarly, in marine water, the majority of PFAS substitutes exhibited negligible risk for invertebrates and fish, and posed elevated risks for phytoplanktons. Reviewed studies showed that alternative PFAS undergo bioaccumulation and cause deleterious effects such as oxidative stress, hepatoxicity, neurotoxicity, histopathological alterations, behavioral and growth abnormalities, reproductive toxicity and metabolism defects in freshwater and marine species. Regarding PFAS treatment methods, photodegradation, photocatalysis, and adsorption showed promising degradation approaches with efficiencies as high as 90%. Finally, research gaps and future perspectives for alternative PFAS toxicological implications and their removal were offered.
    Matched MeSH terms: Fresh Water
  3. Singh RB, Patra KC, Pradhan B, Samantra A
    J Environ Manage, 2024 Feb 14;352:120091.
    PMID: 38228048 DOI: 10.1016/j.jenvman.2024.120091
    Water is a vital resource supporting a broad spectrum of ecosystems and human activities. The quality of river water has declined in recent years due to the discharge of hazardous materials and toxins. Deep learning and machine learning have gained significant attention for analysing time-series data. However, these methods often suffer from high complexity and significant forecasting errors, primarily due to non-linear datasets and hyperparameter settings. To address these challenges, we have developed an innovative HDTO-DeepAR approach for predicting water quality indicators. This proposed approach is compared with standalone algorithms, including DeepAR, BiLSTM, GRU and XGBoost, using performance metrics such as MAE, MSE, MAPE, and NSE. The NSE of the hybrid approach ranges between 0.8 to 0.96. Given the value's proximity to 1, the model appears to be efficient. The PICP values (ranging from 95% to 98%) indicate that the model is highly reliable in forecasting water quality indicators. Experimental results reveal a close resemblance between the model's predictions and actual values, providing valuable insights for predicting future trends. The comparative study shows that the suggested model surpasses all existing, well-known models.
    Matched MeSH terms: Fresh Water
  4. Rojas-Castillo OA, Kepfer Rojas S, Juen L, Montag LFA, Carvalho FG, Mendes TP, et al.
    Conserv Biol, 2024 Feb;38(1):e14172.
    PMID: 37650444 DOI: 10.1111/cobi.14172
    The expansion of oil palm plantations has led to land-use change and deforestation in the tropics, which has affected biodiversity. Although the impacts of the crop on terrestrial biodiversity have been extensively reviewed, its effects on freshwater biodiversity remain relatively unexplored. We reviewed the research assessing the impacts of forest-to-oil palm conversion on freshwater biota and the mitigating effect of riparian buffers on these impacts. We searched for studies comparing taxa richness, species abundance, and community composition of macroinvertebrates, amphibians, and fish in streams in forests (primary and disturbed) and oil palm plantations with and without riparian buffers. Then, we conducted a meta-analysis to quantify the overall effect of the land-use change on the 3 taxonomic groups. Twenty-nine studies fulfilled the inclusion criteria. On average, plantations lacking buffers hosted 44% and 19% fewer stream taxa than primary and disturbed forests, respectively. Stream taxa on plantations with buffers were 24% lower than in primary forest and did not differ significantly from disturbed forest. In contrast, stream community composition differed between forests and plantations regardless of the presence of riparian buffers. These differences were attributed to agrochemical use and altered environmental conditions in the plantations, including temperature changes, worsened water conditions, microhabitat loss, and food and shelter depletion. On aggregate, abundance did not differ significantly among land uses because increases in generalist species offset the population decline of vulnerable forest specialists in the plantation. Our results reveal significant impacts of forest-to-oil palm conversion on freshwater biota, particularly taxa richness and composition (but not aggregate abundance). Although preserving riparian buffers in the plantations can mitigate the loss of various aquatic species, it cannot conserve primary forest communities. Therefore, safeguarding primary forests from the oil palm expansion is crucial, and further research is needed to address riparian buffers as a promising mitigation strategy in agricultural areas.
    Matched MeSH terms: Fresh Water
  5. Ng PKL, Wowor D
    Zootaxa, 2024 Jan 04;5397(2):218-224.
    PMID: 38221209 DOI: 10.11646/zootaxa.5397.2.3
    The gecarcinucid freshwater crab genus, Lepidothelphusa Colosi, 1920, is known only from Sarawak in northern Borneo, with six recognised species i.e. Lepidothelphusa cognettii (Nobili, 1903); L. flavochela Grinang & Ng, 2015; L. limau Grinang & Ng, 2015; L. loi Grinang & Ng, 2015; L. padawan Grinang & Ng, 2015; and L. sangon Grinang & Ng, 2015. The genus is now reported from Indonesian Borneo for the first time, from specimens recently collected from Gunung Kelam in Sintang Regency, Kalimantan Barat Province. Lepidothelphusa menneri n. sp. has a very distinctive tri-coloured pattern in life, unique among congeners. It can also easily be separated from congeners by carapace, epistome, male pleonal and male first gonopod characters.
    Matched MeSH terms: Fresh Water
  6. Hamid N, Junaid M, Manzoor R, Sultan M, Chuan OM, Wang J
    Sci Total Environ, 2023 Dec 20;905:167213.
    PMID: 37730032 DOI: 10.1016/j.scitotenv.2023.167213
    Per- and polyfluoroalkyl substances (PFAS) are also known as "forever chemicals" due to their persistence and ubiquitous environmental distribution. This review aims to summarize the global PFAS distribution in surface water and identify its ecological and human risks through integrated assessment. Moreover, it provides a holistic insight into the studies highlighting the human biomonitoring and toxicological screening of PFAS in freshwater and marine species using quantitative structure-activity relationship (QSAR) based models. Literature showed that PFOA and PFOS were the most prevalent chemicals found in surface water. The highest PFAS levels were reported in the US, China, and Australia. The TEST model showed relatively low LC50 of PFDA and PFOS for Pimephales promelas (0.36 and 0.91 mg/L) and high bioaccumulation factors (518 and 921), revealing an elevated associated toxicity. The risk quotients (RQs) values for P. promelas and Daphnia magna were found to be 269 and 23.7 for PFOS. Studies confirmed that long-chain PFAS such as PFOS and PFOA undergo bioaccumulation in aquatic organisms and induce toxicological effects such as oxidative stress, transgenerational epigenetic effects, disturbed genetic and enzymatic responses, perturbed immune system, hepatotoxicity, neurobehavioral toxicity, altered genetic and enzymatic responses, and metabolism abnormalities. Human biomonitoring studies found the highest PFOS, PFOA, and PFHxS levels in urine, cerebrospinal fluid, and serum samples. Further, long-chain PFOA and PFOS exposure create severe health implications such as hyperuricemia, reduced birth weight, and immunotoxicity in humans. Molecular docking analysis revealed that short-chain PFBS (-11.84 Kcal/mol) and long-chain PFUnDA (-10.53 Kcal/mol) displayed the strongest binding interactions with human serum albumin protein. Lastly, research challenges and future perspectives for PFAS toxicological implications were also discussed, which helps to mitigate associated pollution and ecological risks.
    Matched MeSH terms: Fresh Water
  7. Tan ZW, Lheknim V, Ng PKL
    Zootaxa, 2023 Oct 30;5360(4):531-544.
    PMID: 38220598 DOI: 10.11646/zootaxa.5360.4.4
    A new species of freshwater crab is described from southern Thailand, near the border with Peninsular Malaysia. Species of Stoliczia are characterised by their relatively flat carapace, a third maxilliped exopod that possesses no or a very short flagellum, and a conical male gonopod terminal segment that lacks or only has a very low dorsal fold. Stoliczia setoiyenica, new species, most closely resembles S. perlensis and S. kedahensis from northern Peninsula Malaysia but can be easily distinguished from congeners by differences in carapace and male gonopod morphology. Comparisons to the two known Thai Stoliczia species, S. panhai and S. ekavibhathai, are also provided for completeness.
    Matched MeSH terms: Fresh Water
  8. Ghazali SZ, Lavoué S, Sukmono T, Habib A, Tan MP, Nor SAM
    Mol Phylogenet Evol, 2023 Sep;186:107832.
    PMID: 37263456 DOI: 10.1016/j.ympev.2023.107832
    We examined the phylogeny and biogeography of the glassperch family Ambassidae (Teleostei), which is widely distributed in the freshwater, brackish and marine coastal habitats across the Indo-West Pacific region. We first built a comprehensive time-calibrated phylogeny of Ambassidae using five genes. We then used this tree to reconstruct the evolution of the salinity preference and ancestral areas. Our results indicate that the two largest genera of Ambassidae, Ambassis and Parambassis, are each not monophyletic. The most recent common ancestor of Ambassidae was freshwater adapted and lived in Australia about 56 million years ago. Three independent freshwater-to-marine transitions are inferred, but no marine-to-freshwater ones. To explain the distribution of ambassids, we hypothesise two long-distance marine dispersal events from Australia. A first event was towards Southeast Asia during the early Cenozoic, followed by a second one towards Africa during mid-Cenozoic. The phylogenetic signal associated with the salinity adaptation of these events was not detected, possibly because of the selective extinction of intermediate marine lineages. The Ambassidae shares two characteristics with other freshwater fish groups distributed in continental regions surrounding the Indian Ocean: They are too young to support the hypothesis that their distribution is the result of the fragmentation of Gondwana, but they did not retain the phylogenetic signal of their marine dispersal.
    Matched MeSH terms: Fresh Water*
  9. Misnan R, Kamarazaman NA, Sockalingam K, Yadzir ZHM, Bakhtiar F, Abdullah N, et al.
    J Sci Food Agric, 2023 Sep;103(12):5819-5830.
    PMID: 37092326 DOI: 10.1002/jsfa.12659
    BACKGROUND: Snail allergy is rare but can be fatal. Pila polita, a freshwater snail, was considered as a popular exotic food, particularly in tropical countries, and consumed in processed forms. Thus, the purpose of this study was to identify the major and cross-reactive allergens of P. polita and to determine the impact of food processing on the allergen stability.

    RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated raw snail extract to approximately 24 protein bands, between 9 and 245 kDa. The prominent band at 33 kDa was detected in all raw and processed snail extracts. Immunoblotting tests of the raw extract demonstrated 19 immunoglobulin E (IgE)-binding proteins, and four of them, at 30, 35, 42 and 49 kDa, were revealed as the major IgE-binding proteins of P. polita. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified the 49 and 42 kDa major allergens as actin, whereas the 30 and 35 kDa major allergens were identified as tropomyosin. Immunoblotting revealed that the raw snail had more allergenic proteins than the processed snail. The degree of allergenicity in decreasing order was raw > brine pickled> boiled > roasted > fried > vinegar pickled. The presence of cross-reactivity between P. polita and the shellfish tested was exhibited with either no, complete, or partial inhibitions.

    CONCLUSION: Actin and tropomyosin were identified as the major and cross-reactive allergens of P. polita among local patients with snail allergy. Those major allergens are highly stable to high temperatures, acidic pH, and high salt, which might played a crucial role in snail allergy in Malaysia. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Fresh Water
  10. Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, et al.
    Environ Pollut, 2023 Aug 01;330:121796.
    PMID: 37169242 DOI: 10.1016/j.envpol.2023.121796
    Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p 
    Matched MeSH terms: Fresh Water/analysis
  11. Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, et al.
    Chemosphere, 2023 Jun;325:138367.
    PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367
    The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
    Matched MeSH terms: Fresh Water
  12. Niknejad N, Nazari B, Foroutani S, Hussin ARBC
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71849-71863.
    PMID: 35091956 DOI: 10.1007/s11356-022-18705-1
    Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
    Matched MeSH terms: Fresh Water
  13. Zohari Z, Barkham T, Mohamad Maswan N, Chen SL, Muthanna A, Lee KW, et al.
    J Med Microbiol, 2023 Jun;72(6).
    PMID: 37389575 DOI: 10.1099/jmm.0.001729
    In South East Asia, Streptococcus agalactiae ST283 causes sepsis in healthy adults. Raw freshwater fish consumption is the only known risk factor. These two case reports are the first from Malaysia. Although they cluster with Singapore ST283, the epidemiology is complicated by the flow of people and fish across borders.
    Matched MeSH terms: Fresh Water
  14. Hai T, Ali MA, Alizadeh A, Almojil SF, Almohana AI, Alali AF
    Chemosphere, 2023 Apr;319:137847.
    PMID: 36657576 DOI: 10.1016/j.chemosphere.2023.137847
    Renewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO2 emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO2 (SCO2) cycle. In this study, two methods for using biomass are considered: the first is using synthesis gas generated by the gasifier, and the second is utilizing a digester to generate biogas. A comprehensive parametric study is performed on the designed energy unit to assess the influence of compressor pressure ratio, Gas turbine inlet temperature, supercritical CO2 cycle pressure ratio, and the number of effects of multi-effect distillation on the system performance. Furthermore, the exergy study revealed that the exergy destruction in the digestion unit was 11,337 kW, which was greater than the exergy destruction in the gasification unit, which was 9629. Finally, when compared to the gasifier, the amount of exergy efficiency, net output power, and freshwater production in the digester was greater.
    Matched MeSH terms: Fresh Water*
  15. Al-Humairi ST, Lee JGM, Harvey AP, Salman AD, Juzsakova T, Van B, et al.
    Sci Total Environ, 2023 Mar 01;862:160702.
    PMID: 36481155 DOI: 10.1016/j.scitotenv.2022.160702
    The purpose of this study was to examine the application of the mathematical model of drift flux to the experimental results of the effect of cationic trimethyl-ammonium bromide (CTAB)-aided continuous foam flotation harvesting on the lipid content in Chlorella vulgaris microalgae. An experiment was conducted to determine the effect of the operating conditions on the enrichment factor (EF) and percentage recovery efficiency (%RE), where the flow rates at the inlet and bottom outlet remained constant. Data for the binary system (without algae) and ternary system (with algae) in an equal-area foam column show that the EF decreases linearly with increasing initial CTAB concentrations ranging from 30 to 75 mg/L for three levels of the studied air volumetric flow rate range (1-3) L/min. The percentage harvesting efficiency increased with increasing initial CTAB concentration and air volumetric flow rate to 96 % in the binary systems and 94 % in the ternary systems. However, in the foam column with the riser used in the three systems, a lower volume of liquid foam in the upward outlet stream resulted in a lower RE% than that of the column without the riser. The objective function of EF for the system with algae increased when the initial CTAB concentration was increased from 30 to 45 mg/L in the foam column with a riser for all air flow rates, and after 45 mg/L, a sudden drop in the microalgae EF was observed. In the comparison between the foam column with and without the riser for the system with algae, the optimum EF was 145 for the design of the column with the riser and 139 for the column without the riser.
    Matched MeSH terms: Fresh Water
  16. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Monit Assess, 2023 Jan 18;195(2):307.
    PMID: 36652034 DOI: 10.1007/s10661-022-10856-5
    Recent increase in awareness of the extent of microplastic contamination in marine and freshwater systems has heightened concerns over the ecological and human health risks of this ubiquitous material. Assessing risks posed by microplastic in freshwater systems requires sampling to establish contamination levels, but standard sampling protocols have yet to be established. An important question is whether sampling and assessment should focus on microplastic concentrations in the water or the amount deposited on the bed. On three dates, five replicated water and bed sediment samples were collected from each of the eight sites along the upper reach of the Semenyih River, Malaysia. Microplastics were found in all 160 samples, with mean concentrations of 3.12 ± 2.49 particles/L in river water and 6027.39 ± 16,585.87 particles/m2 deposited on the surface of riverbed sediments. Fibres were the dominant type of microplastic in all samples, but fragments made up a greater proportion of the material on the bed than in the water. Within-site variability in microplastic abundance was high for both water and bed sediments, and very often greater than between-site variability. Patterns suggest that microplastic accumulation on the bed is spatially variable, and single samples are therefore inadequate for assessing bed contamination levels at a site. Sites with the highest mean concentrations in samples of water were not those with the highest concentrations on the bed, indicating that monitoring based only on water samples may not provide a good picture of either relative or absolute bed contamination levels, nor the risks posed to benthic organisms.
    Matched MeSH terms: Fresh Water
  17. Muthukumaravel K, Kanagavalli V, Pradhoshini KP, Vasanthi N, Santhanabharathi B, Alam L, et al.
    PMID: 36283648 DOI: 10.1016/j.cbpc.2022.109492
    In this modern industrialized era of large-scale production of agrochemicals, various emerging contaminants form the main components of waste water and sludge in most of the developing countries of the world. In this concern, phenol- an inevitable and alarming chemical pollutant in aquatic ecosystem, gains a speedy access into the water bodies as an industrial by-product. Though the detrimental effects of phenol have been studied in various aspects of aquatic life, current study is an initiative to unravel the toxic effects of phenol at molecular level in Cirrhinus mrigala. Plasma cortisol level and acetylcholine esterase activity in fish was estimated by Chemiluminescent immunoassay technique and Ellman assay respectively. Scanning electron microscopic studies were carried out to unravel the gill histopathological alterations in exposed fish. It was observed that phenol (22.32 mg/l) inhibits 50 % of acetylcholine esterase activity in brain thereby affecting the locomotion of the targeted carp. Cortisol elevated during the 7th day in exposed fish, but declined progressively on the forthcoming 21st and 28th days. Manifestations in gill encompass curling, fusion, aberrations, sloughing of gill epithelium, wider inter filamentary space and mucus coating in the primary gill filament. It concludes that the discernable deviations produced in both biochemical parameters and key organ gill can be used as a biomarker and bio-indicator respectively for assessing the existence of emerging toxicants in aquatic ecosystem.
    Matched MeSH terms: Fresh Water
  18. Zakaria MH, Ramaiya SD, Bidin N, Syed NNF, Bujang JS
    PeerJ, 2023;11:e15496.
    PMID: 37456903 DOI: 10.7717/peerj.15496
    BACKGROUND: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea.

    METHODS: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses.

    RESULTS: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.

    Matched MeSH terms: Fresh Water/analysis
  19. Muthukumaravel K, Priyadharshini M, Kanagavalli V, Vasanthi N, Ahmed MS, Musthafa MS, et al.
    Environ Monit Assess, 2022 Oct 21;195(1):10.
    PMID: 36269455 DOI: 10.1007/s10661-022-10554-2
    Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.
    Matched MeSH terms: Fresh Water/chemistry
  20. Srie Rahayu SY, Aminingsih T, Fudholi A
    J Trace Elem Med Biol, 2022 May;71:126963.
    PMID: 35231878 DOI: 10.1016/j.jtemb.2022.126963
    BACKGROUND AND AIM: Freshwater clam shells nanoparticles powder is one of the uses of freshwater clams that can manufacture instant granular mineral supplements. This product can be used as a supplement to detoxify heavy metal toxins, such as Mercury. Mercury is an element that is detectable in all environmental media. Adults and children receive the most Mercury from food, air, and water intake. The majority of Mercury in the environment comes from the waste from mining activities and the metal industry. Mercury was found widely in the biosphere and is known as a dangerous hepatotoxicant. This study aimed to describe the hepatoprotective role of nano minerals (Ca, Mg, and Zn) produced from freshwater clam shells against mercury acetate poisoning in mice.

    MATERIAL AND METHODS: The mice were divided randomly into a control group (aqua bidest and mercury acetate) and an experimental group for this purpose. The experimental mice group was given orally nano Ca supplementation in three dose groups (9 mg, 18 mg, and 27 mg/200 g animal body weight) once a day for 21 consecutive days. The mice are then given mercury acetate (1300 µg/200 g animal body weight intraperitoneally) on the 21st day. One hour after giving the nano Ca supplement, the mice's blood was taken. Liver and kidney were autopsied two days later to check quantitative and qualitative changes caused by mercury concentrations in liver and kidney histopathologies.

    RESULTS: The results demonstrated the importance of nano Ca supplementation before mercury acetate induction, which has been shown to reduce necrotic depletion and hepatocyte degeneration.

    CONCLUSION: Nano Ca supplementation has decreased the concentration of Hg in the blood of mice so that it can be used as a potential health supplement to detoxify mercury toxins.

    Matched MeSH terms: Fresh Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links