Displaying publications 1 - 20 of 278 in total

Abstract:
Sort:
  1. Abdul Aziz NA, Wong LM, Bhat R, Cheng LH
    J Sci Food Agric, 2012 Feb;92(3):557-63.
    PMID: 25363645 DOI: 10.1002/jsfa.4606
    Mango is a highly perishable seasonal fruit and large quantities are wasted during the peak season as a result of poor postharvest handling procedures. Processing surplus mango fruits into flour to be used as a functional ingredient appears to be a good preservation method to ensure its extended consumption.
    Matched MeSH terms: Fruit/chemistry*
  2. Hussain K, Ismail Z, Sadikun A, Ibrahim P
    Planta Med, 2010 Mar;76(5):418-25.
    PMID: 19862670 DOI: 10.1055/s-0029-1186279
    The present study aimed to investigate standardized ethanol extracts of fruit and leaves of Piper sarmentosum for their in vivo antioxidant activity in rats using a CCl (4)-induced oxidative stress model. The standardization was based on the quantification of the markers pellitorine, sarmentine and sarmentosine by high performance liquid chromatography (HPLC), and determination of total primary and secondary metabolites. The rats, divided into 7 groups each (n = 6), were used as follows: group 1 (CCl (4), negative control), group 2 (untreated, control), groups 3 and 4 (fruit extract 250 and 500 mg/kg, respectively), groups 5 and 6 (leaf extract 250 and 500 mg/kg, respectively) and group 7 (vitamin-E 100 mg/kg, positive control). The doses were administered orally for 14 days; 4 h following the last dose, a single dose of CCl (4) (1.5 mg/kg) was given orally to all the groups except group 2, and after 24 h, blood and liver of each animal were obtained. Analysis of plasma and liver homogenate exhibited significant preservation of markers of antioxidant activity, total plasma antioxidant activity (TPAA), total protein (TP), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive species (TBARS), in the pretreated groups as compared to the CCl (4) group (p < 0.05). Histology of the liver also evidenced the protection of hepatocytes against CCl (4) metabolites in the pretreated groups. The results of this study indicate the IN VIVO antioxidant activity of both extracts of the plant, which may be valuable to combat diseases involving free radicals.
    Matched MeSH terms: Fruit/chemistry
  3. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Fruit/chemistry
  4. Kuppusamy UR, Arumugam B, Azaman N, Jen Wai C
    ScientificWorldJournal, 2014;2014:737263.
    PMID: 25180205 DOI: 10.1155/2014/737263
    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro "insulin-like" activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
    Matched MeSH terms: Fruit/chemistry
  5. Khoo HE, Azlan A, Ismail A, Abas F, Hamid M
    PLoS One, 2014;9(1):e81447.
    PMID: 24416130 DOI: 10.1371/journal.pone.0081447
    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
    Matched MeSH terms: Fruit/chemistry*
  6. Yew SE, Lim TJ, Lew LC, Bhat R, Mat-Easa A, Liong MT
    J Food Sci, 2011 Apr;76(3):H108-15.
    PMID: 21535834 DOI: 10.1111/j.1750-3841.2011.02107.x
    Probiotic delivery system was developed via the use of microbial transglutaminase (MTG) cross-linked soy protein isolate (SPI) incorporated with agrowastes such as banana peel (BE), banana pulp (BU), and pomelo rind (PR). Inoculums of Lactobacillus bulgaricus FTDC 1511 were added to the cross-linked protein matrix. The incorporation of agrowastes had significantly (P<0.05) reduced the strength, pH value, and the lightness of the SPI gel carriers, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles revealed that the occurring cross-links within the SPI gel carriers were attributed to the addition of MTG. Scanning electron microscope micrographs illustrated that SPI carriers containing agrowastes have exhibited a less-dense protein matrix. All the SPI carriers possessed maximum swelling ratio at 4 to 4.5 within 15 min in simulated gastric fluid (SGF), whereas the maximum swelling ratios of SPI/BE, SPI/BU, and SPI/PR were higher compared to that of control in simulated intestinal fluid (SIF). Additionally, SPI carriers in SGF medium did not show degradation of structure, whereas a major collapse of network was observed in SIF medium, indicating controlled-release in the intestines. The addition of agrowastes into SPI carriers led to a significantly (P<0.0001) lower release of L. bulgaricus FTDC 1511 in SGF medium and a higher release in SIF medium, compared to that of the control. SPI carriers containing agrowastes may be useful transports for living probiotic cells through the stomach prior to delivery in the lower intestines.
    Matched MeSH terms: Fruit/chemistry
  7. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN
    J Sci Food Agric, 2012 Feb;92(3):593-7.
    PMID: 25520982
    In this study the chemical composition, antioxidant activities and cytotoxic effect of the essential oils of Myristica fragrans (nutmeg) and Morinda citrifolia (mengkudu) were determined.
    Matched MeSH terms: Fruit/chemistry
  8. Madani B, Mirshekari A, Yahia E
    J Sci Food Agric, 2016 Jul;96(9):2963-8.
    PMID: 26374618 DOI: 10.1002/jsfa.7462
    BACKGROUND: There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects.

    RESULTS: Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage.

    CONCLUSION: Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry.

    Matched MeSH terms: Fruit/chemistry*
  9. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

    Matched MeSH terms: Fruit/chemistry*
  10. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Fruit/chemistry
  11. Mohamad Shalan NAA, Mustapha NM, Mohamed S
    Regul Toxicol Pharmacol, 2017 Feb;83:46-53.
    PMID: 27871867 DOI: 10.1016/j.yrtph.2016.11.022
    Noni (Morinda citrifolia) leaf and fruit are used as food and medicine. This report compares the chronic toxicity of Noni fruit and edible leaf water extracts (two doses each) in female mice. The 6 months study showed the fruit extract produced chronic toxicity effects at the high dose of 2 mg/ml drinking water, evidenced through deteriorated liver histology (hepatocyte necrosis), reduced liver length, increased liver injury marker AST (aspartate aminotransferase) and albumin reduction, injury symptoms (hypoactivity, excessive grooming, sunken eyes and hunched posture) and 40% mortality within 3 months. This hepatotoxicity results support the six liver injury reports in humans which were linked to chronic noni fruit juice consumption. Both doses of the leaf extracts demonstrated no observable toxicity. The hepatotoxicity effects of the M. citrifolia fruit extract in this study is unknown and may probably be due to the anthraquinones in the seeds and skin, which had potent quinone reductase inducer activity that reportedly was 40 times more effective than l-sulforaphane. This report will add to current data on the chronic toxicity cases of Morinda citrifolia fruit. No report on the chronic toxicity of Morinda citrifolia fruit in animal model is available for comparison.
    Matched MeSH terms: Fruit/chemistry
  12. Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):109-121.
    PMID: 33249946 DOI: 10.1080/14756366.2020.1844680
    The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.
    Matched MeSH terms: Fruit/chemistry
  13. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

    Matched MeSH terms: Fruit/chemistry*
  14. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Fruit/chemistry
  15. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M
    BMC Complement Altern Med, 2017 Jan 14;17(1):47.
    PMID: 28088220 DOI: 10.1186/s12906-017-1555-0
    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.
    Matched MeSH terms: Fruit/chemistry
  16. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: Fruit/chemistry
  17. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: Fruit/chemistry*
  18. Ali RB, Atangwho IJ, Kaur N, Abraika OS, Ahmad M, Mahmud R, et al.
    Molecules, 2012 Apr 30;17(5):4986-5002.
    PMID: 22547320 DOI: 10.3390/molecules17054986
    An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.
    Matched MeSH terms: Fruit/chemistry*
  19. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Fruit/chemistry
  20. Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A
    PLoS One, 2013;8(7):e70058.
    PMID: 23894592 DOI: 10.1371/journal.pone.0070058
    BACKGROUND: Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches.

    METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation.

    CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

    Matched MeSH terms: Fruit/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links