Displaying publications 1 - 20 of 278 in total

Abstract:
Sort:
  1. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Fruit/chemistry*
  2. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
    Matched MeSH terms: Fruit/chemistry
  3. Jahurul MHA, Zaidul ISM, Beh L, Sharifudin MS, Siddiquee S, Hasmadi M, et al.
    Food Res Int, 2019 01;115:105-115.
    PMID: 30599921 DOI: 10.1016/j.foodres.2018.08.017
    Fruits are important food commodities that can be consumed either raw or processed and are valued for their taste, nutrients, and healthy compounds. Mangifera pajang Kosterm (bambangan) is an underutilized fruit found in Malaysia (Sabah and Sarawak), Brunei, and Indonesia (Kalimantan). It is highly fibrous and juicy with an aromatic flavour and strong smell. In recent years, bambangan fruit has been gaining more attention due to its high fibre, carotenoid content, antioxidant properties, phytochemicals, and medicinal usages. Therefore, the production, trade, and consumption of bambangan fruit could be increased significantly, both domestically and internationally, because of its nutritional value. The identification and quantification of bioactive compounds in bambangan fruit has led to considerable interest among scientists. Bambangan fruit and its waste, especially its seeds and peels, are considered cheap sources of valuable food and are considered nutraceutical ingredients that could be used to prevent various diseases. The use of bambangan fruit waste co-products for the production of bioactive components is an important step towards sustainable development. This is an updated report on the nutritional composition and health-promoting phytochemicals of bambangan fruit and its co-products that explores their potential utilization. This review reveals that bambangan fruit and its co-products could be used as ingredients of dietary fibre powder or could be incorporated into food products (biscuits and macaroni) to enhance their nutraceutical properties.
    Matched MeSH terms: Fruit/chemistry*
  4. Yodhnu S, Sirikatitham A, Wattanapiromsakul C
    J Chromatogr Sci, 2009 Mar;47(3):185-9.
    PMID: 19298703
    Mangosteen, Garcinia mangostana L., is known as the "Queen of fruits" and can be cultivated in the tropical rainforest such as Malaysia, Indonesia, and Thailand. Compounds isolated from the fruit peel of mangosteen contain abundant xanthones (especially alpha-mangostin). It has been used as traditional medicine such as anti-inflammatory and antibacterial and is popularly applied to cosmetic and pharmaceutical products. However, there is little information for quality and quantity determination of alpha-mangostin in mangosteen. Thus, the aim of this study was to set up a validated and stability-indicated isocratic reverse-phase high-performance liquid chromatographic (HPLC) method for quality control and quantity determination of a-mangostin from mangosteen peel extract. The assay was fully validated and shown to be linear (r(2) > 0.999), sensitive (LOD = 0.02 microg/mL and LOQ = 0.08 microg/mL), accurate (intra-day was between 98.1-100.8%, inter-day was between 90.0-101.3%), precise (intra-day variation < or = 1.8%, inter-day variation < or = 4.3%), specific, and with good recovery. Total analysis was approximately 8 min. The finalized method is also a stability-indicating assay. The present method should be useful for analytical research and for routine quality control analysis of alpha-mangostin in mangosteen peel extract and products of mangosteen.
    Matched MeSH terms: Fruit/chemistry*
  5. Yaakob Z, Sukarman IS, Narayanan B, Abdullah SR, Ismail M
    Bioresour Technol, 2012 Jan;104:695-700.
    PMID: 22113069 DOI: 10.1016/j.biortech.2011.10.058
    Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
    Matched MeSH terms: Fruit/chemistry*
  6. Abdulrauf LB, Tan GH
    J AOAC Int, 2016 Nov 01;99(6):1415-1425.
    PMID: 28206878 DOI: 10.5740/jaoacint.16-0275
    This review presents the application of carbon nanotubes as sorbent materials in the analysis of pesticide residues in fruits and vegetables. The advantages, limitations, and challenges of carbon nanotubes, with respect to their use in analytical chemistry, are presented. The efficiency of their application as extraction sorbent materials (in terms of LOD, LOQ, linearity, relative recovery, and RSD) in SPE, solid-phase microextraction, multi-plug filtration clean-up, matrix solid-phase dispersion, and the quick, easy, cheap, effective, rugged and safe method is reported. The synthesis, functionalization, purification, and characterization methods of carbon nanotubes are also discussed.
    Matched MeSH terms: Fruit/chemistry*
  7. Tamjid Farki NNANL, Abdulhameed AS, Surip SN, ALOthman ZA, Jawad AH
    Int J Phytoremediation, 2023;25(12):1567-1578.
    PMID: 36794599 DOI: 10.1080/15226514.2023.2175780
    Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
    Matched MeSH terms: Fruit/chemistry
  8. Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, et al.
    Carbohydr Polym, 2020 Jun 15;238:116185.
    PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185
    Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
    Matched MeSH terms: Fruit/chemistry*
  9. Khaliq A, Li WF, Ali S, Shah ST, Ma ZH, Mao J, et al.
    PLoS One, 2022;17(3):e0265111.
    PMID: 35353819 DOI: 10.1371/journal.pone.0265111
    Poor postharvest handling, microbial infestation, and high respiration rate are some the factors are responsible for poor storage life of perishable commodities. Therefore, effective preservation of these commodities is needed to lower the damages and extend shelf life. Preservation is regarded as the action taken to maintain desired properties of a perishable commodity as long as possible. Persimmon (Diospyros kaki) is perishable fruit with high nutritive value; however, has very short shelf-life. Therefore, effective preservation and drying is needed to extend its storage life. Drying temperature and preservatives significantly influence the quality of perishable vegetables and fruits during drying. The current study investigated the effect of different temperatures and preservatives on drying kinetics and organoleptic quality attributes of persimmon. Persimmon fruits were treated with preservatives (25% honey, 25% aloe vera, 2% sodium benzoate, 1% potassium metabisulfite, and 2% citric acid solutions) under different drying temperatures (40, 45, and 50°C). All observed parameters were significantly affected by individual effects of temperatures and preservatives, except ash contents. Similarly, interactive effects were significant for all parameters except total soluble sugars, ash contents, and vitamin C. Generally, fruits treated with citric acid and dried under 50°C had 8.2% moisture loss hour-1, 14.9 drying hours, 0.030 g H2O g-1 hr-1, 1.23° Brix of total soluble solids, 6.71 pH, 1.35% acidity, and 6.3 mg vitamin C. These values were better than the rest of the preservatives and drying temperatures used in the study. Therefore, treating fruits with citric acid and drying at 50°C was found a promising technique to extend storage life of persimmon fruits. It is recommended that persimmon fruits dried at 50°C and preserved in citric acid can be used for longer storage period.
    Matched MeSH terms: Fruit/chemistry
  10. Ahmad AF, Abbas Z, Obaiys SJ, Ibrahim N, Hashim M, Khaleel H
    PLoS One, 2015;10(10):e0140505.
    PMID: 26474301 DOI: 10.1371/journal.pone.0140505
    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.
    Matched MeSH terms: Fruit/chemistry*
  11. Lim PN, Wu TY, Sim EY, Lim SL
    J Sci Food Agric, 2011 Nov;91(14):2637-42.
    PMID: 21725978 DOI: 10.1002/jsfa.4504
    Soybean (Glycine max L.) is one the most commonly consumed legumes worldwide, with 200 million metric tons produced per year. However, the inedible soy husk would usually be removed during the process and the continuous generation of soybean husk may represent a major disposal problem for soybean processing industries. Thus, the main aim of the present study was to investigate the possibility to convert soybean husk (S) amended with market-rejected papaya (P) into vermicompost using Eudrilus eugeniae.
    Matched MeSH terms: Fruit/chemistry*
  12. Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Chieng BW
    Int J Mol Sci, 2014;15(9):15344-57.
    PMID: 25177865 DOI: 10.3390/ijms150915344
    In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200-230 °C) and time (30-120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.
    Matched MeSH terms: Fruit/chemistry
  13. Lim CY, Junit SM, Aziz AA, Jayapalan JJ, Hashim OH
    Electrophoresis, 2018 12;39(23):2965-2973.
    PMID: 30280388 DOI: 10.1002/elps.201800258
    The hypolipidemic effects of Tamarindus indica fruit pulp extract (Ti-FPE) have been earlier reported but the underlying molecular mechanisms are still uncertain. In this study, hamsters fed with Ti-FPE, both in the absence and presence of high-cholesterol diet, were shown to have significantly reduced levels of serum triglyceride, LDL-C and total cholesterol. The Ti-FPE-fed non-hypercholesterolemic hamsters also showed significant enhanced levels of serum apolipoprotein A1, antithrombin III, transferrin and vitamin D binding protein. In diet-induced hypercholesterolemic hamsters, apolipoprotein A1, antithrombin III and transferrin, which were relatively low in levels, became significantly enhanced when the hamsters were fed with Ti-FPE. These Ti-FPE-fed hypercholesterolemic hamsters also showed significant higher levels of serum vitamin D binding protein. When the different treated groups of hamsters were analyzed for the levels of the four serum proteins by ELISA, similar altered abundance were detected. Ingenuity Pathway Analysis of the Ti-FPE modulated serum proteins singled out "Lipid metabolism, molecular transport, small molecule biochemistry" as the top network. Our results suggest that the hypolipidemic effects of Ti-FPE are associated with alterations of serum proteins that are known to be cardioprotective and involved in the metabolism of lipids. The MS data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD010232.
    Matched MeSH terms: Fruit/chemistry*
  14. Jalili M, Jinap S, Son R
    PMID: 21416415 DOI: 10.1080/19440049.2010.551300
    The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
    Matched MeSH terms: Fruit/chemistry*
  15. Swamy KB, Hadi SA, Sekaran M, Pichika MR
    J Med Food, 2014 Nov;17(11):1165-9.
    PMID: 25314134 DOI: 10.1089/jmf.2013.3084
    Synsepalum dulcificum or the "miracle fruit" is well known for its taste-modifying ability. The aim of this review was to assess the published medically beneficial as well as potential characteristics of this fruit. A search in three databases, including PubMed, ScienceDirect, and Google Scholar, was made with appropriate keywords. The resulting articles were screened in different stages based on the title, abstract, and content. A total of nine articles were included in this review. This review summarized the findings of previously published studies on the effects of miracle fruit. The main studied characteristic of the fruit was its effect on the taste receptors, resulting in the sweet sensation when substances with acidic content were ingested. This effect was shown to be related to a glycoprotein called "miraculin." Other beneficial characteristics of this fruit were its antioxidant and anticancer abilities that are due to the various amides existing in the miracle fruit. Apart from the above, the other observed effect of this fruit was its antidiabetic effect that was tested in rats. Further studies should be conducted to establish the findings. The miracle fruit can be a healthy additive due to its unique characteristics, including sour taste sensation modification as well as its antioxidant and antidiabetic effects.
    Matched MeSH terms: Fruit/chemistry*
  16. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen N
    Drug Des Devel Ther, 2018;12:657-671.
    PMID: 29636600 DOI: 10.2147/DDDT.S155115
    Background: Brucea javanica (L.) Merr. is a plant from the genus Brucea, which is used in local traditional medicine to treat various diseases. Recent studies revealed an impressive anticancer efficiency of B. javanica extract in different types of cancer cells.

    Purpose: In this study, we have investigated the cytotoxic effects of the B. javanica hexane, ethanolic extracts against colon cancer cells. HT29 colon cells were selected as an in vitro cancer model to evaluate the anticancer activity of B. javanica ethanolic extract (BJEE) and the possible mechanisms of action that induced apoptosis.

    Methods: 3-(4,5-dimethylthiazol-2-yl)-2, 5,-diphenyltetrazolium bromide (MTT), lactate dehydrogenase, acridine orange/propidium iodide, and annexin-V-fluorescein isothiocyanate assays were performed to determine the antiproliferative and apoptosis validation of BJEE on cancer cells. Measurement of reactive oxygen species (ROS) production, caspase activities, nucleus factor-κB activity, and gene expression experiments was done to investigate the potential mechanisms of action in the apoptotic process.

    Results: The results obtained from this study illustrated the significant antiproliferative effect of BJEE on colorectal cancer cells, with a concentration value that inhibits 50% of the cell growth of 25±3.1 µg/mL after 72 h of treatment. MTT assay demonstrated that the BJEE is selectively toxic to cancer cells, and BJEE induced cell apoptosis via activation of caspase-8 along with modulation of apoptosis-related proteins such as Fas, CD40, tumor necrosis factor-related apoptosis-inducing ligands, and tumor necrosis factor receptors, which confirmed the contribution of extrinsic pathway. Meanwhile, increased ROS production in treated cells subsequently activated caspase-9 production, which triggered the intrinsic pathways. In addition, overexpression of cytochrome-c, Bax, and Bad proteins along with suppression of Bcl-2 illustrated that mitochondrial-dependent pathway also contributed to BJEE-induced cell death. Consistent with the findings from this study, BJEE-induced cancer cell death proceeds via extrinsic and intrinsic mitochondrial-dependent and -independent events.

    Conclusion: From the evidence obtained from this study, it is concluded that the BJEE is a promising natural extract to combat colorectal cancer cells (HT29 cells) via induction of apoptosis through activation of extrinsic and intrinsic pathways.

    Matched MeSH terms: Fruit/chemistry*
  17. Chong UR, Abdul-Rahman PS, Abdul-Aziz A, Hashim OH, Junit SM
    PLoS One, 2012;7(6):e39476.
    PMID: 22724021 DOI: 10.1371/journal.pone.0039476
    The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach.
    Matched MeSH terms: Fruit/chemistry
  18. Rahmat F, Fen YW, Anuar MF, Omar NAS, Zaid MHM, Matori KA, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670482 DOI: 10.3390/molecules26041061
    In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
    Matched MeSH terms: Fruit/chemistry*
  19. Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, Dewettinck K, et al.
    Food Funct, 2018 Mar 01;9(3):1755-1767.
    PMID: 29508864 DOI: 10.1039/c7fo01775h
    In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.
    Matched MeSH terms: Fruit/chemistry
  20. Chang AS, Yeong BY, Koh WP
    Nutr Rev, 2010 Apr;68(4):246-52.
    PMID: 20416020 DOI: 10.1111/j.1753-4887.2010.00283.x
    Reported here is a summary of the proceedings of the Symposium on Plant Polyphenols: Nutrition, Health and Innovations, which was cosponsored by the Southeast Asia Region branch of the International Life Sciences Institute and the Nutrition Society of Malaysia in Kuala Lumpur, Malaysia, June 22-23, 2009. The symposium provided a timely update of research regarding the protective effects of polyphenols in chronic diseases, such as cardiovascular disease and cancer, as well as the development of innovative polyphenol-containing food products with enhanced nutritive and health properties. Presentations covered polyphenols from a wide range of food sources such as tea, coffee, nuts and seeds, cocoa and chocolate, soy, and Asian fruits, vegetables, and spices. The symposium was attended by a large and diverse group of nutritionists, dietitians, researchers and allied health professionals, as well as management, research and development, and marketing personnel from the food and beverage industry. Their enthusiastic participation was a testament to the increasing awareness and interest in polyphenols in the prevention and control of chronic diseases. Presented here are some of the highlights and important information from the symposium.
    Matched MeSH terms: Fruit/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links