Displaying publications 1 - 20 of 133 in total

Abstract:
Sort:
  1. Husnain AU, Mokhtar N, Mohamed Shah NB, Dahari MB, Azmi AA, Iwahashi M
    PLoS One, 2024;19(2):e0296969.
    PMID: 38394180 DOI: 10.1371/journal.pone.0296969
    There are three primary objectives of this work; first: to establish a gas concentration map; second: to estimate the point of emission of the gas; and third: to generate a path from any location to the point of emission for UAVs or UGVs. A mountable array of MOX sensors was developed so that the angles and distances among the sensors, alongside sensors data, were utilized to identify the influx of gas plumes. Gas dispersion experiments under indoor conditions were conducted to train machine learning algorithms to collect data at numerous locations and angles. Taguchi's orthogonal arrays for experiment design were used to identify the gas dispersion locations. For the second objective, the data collected after pre-processing was used to train an off-policy, model-free reinforcement learning agent with a Q-learning policy. After finishing the training from the training data set, Q-learning produces a table called the Q-table. The Q-table contains state-action pairs that generate an autonomous path from any point to the source from the testing dataset. The entire process is carried out in an obstacle-free environment, and the whole scheme is designed to be conducted in three modes: search, track, and localize. The hyperparameter combinations of the RL agent were evaluated through trial-and-error technique and it was found that ε = 0.9, γ = 0.9 and α = 0.9 was the fastest path generating combination that took 1258.88 seconds for training and 6.2 milliseconds for path generation. Out of 31 unseen scenarios, the trained RL agent generated successful paths for all the 31 scenarios, however, the UAV was able to reach successfully on the gas source in 23 scenarios, producing a success rate of 74.19%. The results paved the way for using reinforcement learning techniques to be used as autonomous path generation of unmanned systems alongside the need to explore and improve the accuracy of the reported results as future works.
    Matched MeSH terms: Gamma Rays
  2. Mansor A, Ariffin AF, Yusof N, Mohd S, Ramalingam S, Md Saad AP, et al.
    Cell Tissue Bank, 2023 Mar;24(1):25-35.
    PMID: 35610332 DOI: 10.1007/s10561-022-10013-9
    Bone processing and radiation were reported to influence mechanical properties of cortical bones due in part to structural changes and denaturation of collagen composition. This comparative study was to determine effects of bone processing on mechanical properties and organic composition, and to what extent the radiation damaging after each processing. Human femur cortical bones were processed by freezing, freeze-drying and demineralisation and then gamma irradiated at 5, 15, 20, 25 and 50 kGy. In the compression test, freeze drying significantly decreased the Young's Modulus by 15%, while demineralisation reduced further by 90% (P 
    Matched MeSH terms: Gamma Rays
  3. Garba NN, Abdulkadir M, Nasiru R, Saleh MA, Bello S, Khandaker MU, et al.
    Isotopes Environ Health Stud, 2023 Mar;59(1):112-125.
    PMID: 36735938 DOI: 10.1080/10256016.2023.2172001
    Terrestrial gamma radiation dose (TGRD) rates were measured in situ from different locations in Katsina State, Nigeria, using a portable radiation survey metre based on geological formations and soil types. The measured TGRD rates ranged from 45 to 271 nGyh-1 with an average value of 116 ± 1 nGyh-1. Geological formation (silicified sheared rock) and soil type (lithosols and ferruginous crusts and ferruginous tropical soils) appeared to have the highest mean TGRD values of 163 and 134 nGyh-1 with sandstone geological formation and alluvial and hydromorphic soils having the lowest TGRD with values of 80 and 61 nGyh-1, respectively. One way ANOVA results shows that the tested null hypothesis was rejected. Thus, indicating that there exists a strong relationship between the various geological formations, soil types with the measured TGRD values based on the alternate hypothesis. Human health hazard indices like annual effective dose equivalent (AEDE), lifetime outdoor annual equivalent dose, and relative excess lifetime outdoor cancer risk associated with the mean TGRD of the study area were also calculated and found to be 0.711, 9.955 mSv, and 5.79 × 10-4, respectively. These values were higher than the world average values but favourable compared with the safety limits recommended by ICRP.
    Matched MeSH terms: Gamma Rays
  4. Ma S, Mohd Raffi AN, Rosli MA, Mohd Zain NA, Ibrahim MH, Karsani SA, et al.
    Sci Rep, 2023 Jan 05;13(1):182.
    PMID: 36604574 DOI: 10.1038/s41598-022-26745-3
    Due to their sessile nature, plants are exposed to various environmental stressors such as exposure to high levels of harmful ultraviolet (UV), ionizing, and non-ionizing radiations. This exposure may result in various damages, ranging from DNA and chromosomal aberrations to phenotypic abnormalities. As an adaptation, plants have evolved efficient DNA repair mechanisms to detect and repair any damage caused by exposure to these harmful stressors to ensure their survival. In this study, the effects of gamma radiation (as a source of ionizing radiation) on clonal Ananas comosus var. MD2 was evaluated. The morphology and physiology of the clonal plantlets before and after exposure to gamma radiation were monitored at specific time intervals. The degree of genetic variation between the samples pre- and post-irradiation was also analyzed by using inter-simple sequence repeat (ISSR) markers. The resulting data revealed that the heights of the irradiated plantlets were significantly reduced (compared to control), but improved with the recovery period. Irradiated samples also exhibited relatively good photosynthetic efficiency that further improved as the plantlets recover. These observations were supported by the ISSR analysis, where the genetic dissimilarities between the irradiated samples and control were reduced by 0.1017, after 4 weeks of recovery. Overall, our findings suggested that the phenotype recovery of the clonal A. comosus var. MD2 plantlets was contributed by their ability to detect and repair the DNA lesions (as exemplified by the reduction in genetic dissimilarity after 4 weeks) and hence allow the plantlets to undergo phenotype reversion to normal plant stature.
    Matched MeSH terms: Gamma Rays/adverse effects
  5. Yang Harmony TC, Yusof N, Ramalingam S, Baharin R, Syahrom A, Mansor A
    Clin Orthop Relat Res, 2022 Feb 01;480(2):407-418.
    PMID: 34491235 DOI: 10.1097/CORR.0000000000001968
    BACKGROUND: Gamma irradiation, which minimizes the risk of infectious disease transmission when human bone allograft is used, has been found to negatively affect its biomechanical properties. However, in those studies, the deep-freezing temperature during irradiation was not necessarily maintained during transportation and sterilization, which may have affected the findings. Prior reports have also suggested that controlled deep freezing may mitigate the detrimental effects of irradiation on the mechanical properties of bone allograft.

    QUESTION/PURPOSE: Does a controlled deep-freezing temperature during irradiation help preserve the compressive mechanical properties of human femoral cortical bone allografts?

    METHODS: Cortical bone cube samples, each measuring 64 mm3, were cut from the mid-diaphyseal midshaft of five fresh-frozen cadaver femurs (four male donors, mean [range] age at procurement 42 years [42 to 43]) and were allocated via block randomization into one of three experimental groups (with equal numbers of samples from each donor allocated into each group). Each experimental group consisted of 20 bone cube samples. Samples irradiated in dry ice were subjected to irradiation doses ranging from 26.7 kGy to 27.1 kGy (mean 26.9 kGy) at a deep-freezing temperature below -40°C (the recommended long-term storage temperature for allografts). Samples irradiated in gel ice underwent irradiation doses ranging from 26.2 kGy and 26.4 kGy (mean 26.3 kGy) in a freezing temperature range between -40°C and 0°C. Acting as controls, samples in a third group were not subjected to gamma irradiation. The mechanical properties (0.2% offset yield stress, ultimate compression stress, toughness, and the Young modulus) of samples from each group were subsequently evaluated via axial compression loading to failure along the long axis of the bone. The investigators were blinded to sample group during compression testing.

    RESULTS: The mean ultimate compression stress (84 ± 27 MPa versus 119 ± 31 MPa, mean difference 35 [95% CI 9 to 60]; p = 0.005) and toughness (3622 ± 1720 kJ/m3 versus 5854 ± 2900 kJ/m3, mean difference 2232 [95% CI 70 to 4394]; p = 0.009) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than in those irradiated at deep-freezing temperatures (below -40°C). The mean 0.2% offset yield stress (73 ± 28 MPa versus 109 ± 38 MPa, mean difference 36 [95% CI 11 to 60]; p = 0.002) and ultimate compression stress (84 ± 27 MPa versus 128 ± 40 MPa, mean difference 44 [95% CI 17 to 69]; p < 0.001) of samples irradiated at a higher temperature range (-40°C to 0°C) were lower than the nonirradiated control group samples. The mean 0.2% offset yield stress (73 ± 28 MPa versus 101 ± 28 MPa, mean difference 28 [95% CI 3 to 52]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to those irradiated at deep-freezing temperature. The mean toughness (3622 ± 1720 kJ/m3 versus 6231 ± 3410 kJ/m3, mean difference 2609 [95% CI 447 to 4771]; p = 0.02; effect size = 1.0 [95% CI 0.8 to 1.2]) of samples irradiated at higher temperature range (-40°C to 0°C) were no different with the numbers available to the non-irradiated control group samples. The mean 0.2% offset yield stress, ultimate compression stress, and toughness of samples irradiated in deep-freezing temperatures (below -40°C) were not different with the numbers available to the non-irradiated control group samples. The Young modulus was not different with the numbers available among the three groups.

    CONCLUSION: In this study, maintenance of a deep-freezing temperature below -40°C, using dry ice as a cooling agent, consistently mitigated the adverse effects of irradiation on the monotonic-compression mechanical properties of human cortical bone tissue. Preserving the mechanical properties of a cortical allograft, when irradiated in a deep-freezing temperature, may have resulted from attenuation of the deleterious, indirect effects of gamma radiation on its collagen architecture in a frozen state. Immobilization of water molecules in this state prevents radiolysis and the subsequent generation of free radicals. This hypothesis was supported by an apparent loss of the protective effect when a range of higher freezing temperatures was used during irradiation.

    CLINICAL RELEVANCE: Deep-freezing temperatures below -40°C during gamma irradiation may be a promising approach to better retain the native mechanical properties of cortical bone allografts. A further study of the effect of deep-freezing during gamma radiation sterilization on sterility and other important biomechanical properties of cortical bone (such as, tensile strength, fracture toughness, and fatigue) is needed to confirm these findings.

    Matched MeSH terms: Gamma Rays*
  6. Sanusi MSM, Hassan WMSW, Hashim S, Ramli AT
    Appl Radiat Isot, 2021 Aug;174:109791.
    PMID: 34062400 DOI: 10.1016/j.apradiso.2021.109791
    Terrestrial radioactivity monitoring of 238U and 232Th series, and 40K in soil is an essential practice for radioactivity and radiation measurement of a place. In conventional practice, only basic data can be in-situ measured using a survey instrument, for example radioactivity concentration in soil and ambient dose equivalent rate. For other physical quantities, for example organ absorbed dose and organ equivalent dose, the measurement is impossible to be performed and can only be computed using Monte Carlo radiation transport simulations. In the past, most of the works only focused on calculating air-kerma-to-effective dose conversion factors. However, the information on organ dose conversion factors is scarcely documented and reported. This study was conducted to calculate organ absorbed and tissue-weighted equivalent dose conversion factors as a result of exposure from terrestrial gamma radiation. Series of organ dose conversion factors is produced based on computations from Monte Carlo MCNP5 simulations using modelled gamma irradiation geometry and established adult MIRD phantom. The study found out that most of the radiation exposed organs absorb energy at comparable rates, except for dense and superficial tissues i.e., skeleton and skin, which indicated slightly higher values. The good agreement between this work and previous studies demonstrated that our gamma irradiation geometry and modelling of gamma radiation sources are adequate. Therefore, the proposed organ dose conversion factors from this study are reasonably acceptable for dose estimation in environmental radioactivity monitoring practices.
    Matched MeSH terms: Gamma Rays
  7. Hasan N, Sham NFR, Karim MKA, Fuad SBSA, Hasani NAH, Omar E, et al.
    Sci Rep, 2021 Jul 15;11(1):14559.
    PMID: 34267293 DOI: 10.1038/s41598-021-93964-5
    We presented a development of a custom lead shield and mouse strainer for targeted irradiation from the gamma-cell chamber. This study was divided into two parts i.e., to (i) fabricate the shield and strainer from a lead (Pb) and (ii) optimize the irradiation to the mice-bearing tumour model with 2 and 8 Gy absorbed doses. The lead shielding was fabricated into a cuboid shape with a canal on the top and a hole on the vertical side for the beam path. Respective deliveries doses of 28 and 75 Gy from gamma-cell were used to achieve 2 and 8 Gy absorbed doses at the tumour sites.
    Matched MeSH terms: Gamma Rays
  8. Oyekanmi AA, Kumar USU, H P S AK, Olaiya NG, Amirul AA, Rahman AA, et al.
    Polymers (Basel), 2021 May 20;13(10).
    PMID: 34065404 DOI: 10.3390/polym13101664
    Antimicrobial irradiated seaweed-neem biocomposite films were synthesized in this study. The storage functional properties of the films were investigated. Characterization of the prepared films was conducted using SEM, FT-IR, contact angle, and antimicrobial test. The macroscopic and microscopic including the analysis of the functional group and the gas chromatography-mass spectrometry test revealed the main active constituents present in the neem extract, which was used an essential component of the fabricated films. Neem leaves' extracts with 5% w/w concentration were incorporated into the matrix of seaweed biopolymer and the seaweed-neem bio-composite film were irradiated with different dosages of gamma radiation (0.5, 1, 1.5, and 2 kGy). The tensile, thermal, and the antimicrobial properties of the films were studied. The results revealed that the irradiated films exhibited improved functional properties compared to the control film at 1.5 kGy radiation dosage. The tensile strength, tensile modulus, and toughness exhibited by the films increased, while the elongation of the irradiated bio-composite film decreased compared to the control film. The morphology of the irradiated films demonstrated a smoother surface compared to the control and provided surface intermolecular interaction of the neem-seaweed matrix. The film indicated an optimum storage stability under ambient conditions and demonstrated no significant changes in the visual appearance. However, an increase in the moisture content was exhibited by the film, and the hydrophobic properties was retained until nine months of the storage period. The study of the films antimicrobial activities against Staphylococcus aureus (SA), and Bacillus subtilis (BS) indicated improved resistance to bacterial activities after the incorporation of neem leaves extract and gamma irradiation. The fabricated irradiated seaweed-neem bio-composite film could be used as an excellent sustainable packaging material due to its effective storage stability.
    Matched MeSH terms: Gamma Rays
  9. Lam SE, Mat Nawi SN, Abdul Sani SF, Khandaker MU, Bradley DA
    Sci Rep, 2021 04 12;11(1):7939.
    PMID: 33846448 DOI: 10.1038/s41598-021-86942-4
    Preliminary study has been made of black human hair, carbon concentration of some 53%, a model in examining the potential of hair of the human head in retrospective and emergency biodosimetry applications, also offering effective atomic number near to that of water. The hair samples were exposed to [Formula: see text]Co gamma rays, delivering doses from 0 to 200 Gy. Structural alterations were observed, use being made of Raman and photoluminescence (PL) spectroscopy. Most prominent among the features observed in the first-order Raman spectra are the D and G peaks, appearing at 1370 [Formula: see text] and 1589 [Formula: see text] respectively, the intensity ratio [Formula: see text] indicating dose-dependent defects generation and annealing of structural alterations. The wavelengths of the PL absorption and emission peaks are found to be centred at [Formula: see text] nm and [Formula: see text] nm, respectively. The hair samples mean band gap energy ([Formula: see text]) post-irradiation was found to be [Formula: see text] eV, of the order of a semiconductor and approximately two times the [Formula: see text] of other carbon-rich materials reported via the same methodology.
    Matched MeSH terms: Gamma Rays*
  10. Adenan MNH, Yazan LS, Christianus A, Md Hashim NF, Mohd Noor S, Shamsudin S, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809054 DOI: 10.3390/molecules26061557
    Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression.
    Matched MeSH terms: Gamma Rays/adverse effects
  11. Tarawneh MA, Saraireh SA, Chen RS, Ahmad SH, Al-Tarawni MAM, Yu LJ
    Radiat Phys Chem Oxf Engl 1993, 2021 Feb;179:109168.
    PMID: 33100612 DOI: 10.1016/j.radphyschem.2020.109168
    A thermoplastic elastomer (TPE) based nanocomposite with the same weight ratio of hybrid nanofillers composed of carbon nanotubes (CNTs) and montmorillonite nanoclay (DK4) was prepared using a melt blending technique with an internal mixer. The TPE composite was blended from polylactic acid (PLA), liquid natural rubber (LNR) as a compatibilizer and natural rubber (NR) in a volume ratio of 70:10:20, respectively. The weight ratio of CNTs and DK4 was 2.5 wt%. The prepared samples were exposed to gamma radiation at range of 0-250 kGy. After exposure to gamma radiation, the mechanical, thermo-mechanical, thermal and electrical conductivity properties of the composites were significantly higher than unirradiated TPE composites as the irradiation doses increased up to 150 kGy. Transmission electron microscopy (TEM) micrographs revealed the good distribution and interaction between the nano-fillers and the matrix in the prepared TPE hybrid nanocomposites. In summary, the findings from this work definite that gamma irradiation might be a viable treatment to improve the properties of TPE nanocomposite for electronic packaging applications.
    Matched MeSH terms: Gamma Rays
  12. Sanusi MSM, Ramli AT, Hashim S, Lee MH
    Ecotoxicol Environ Saf, 2021 Jan 15;208:111727.
    PMID: 33396058 DOI: 10.1016/j.ecoenv.2020.111727
    Continuous depletion in tin productions has led to a newly emerging industry that is a tin by-product (amang) processing industry to harness mega tons of tin by-products produced in the past. Amang composed of profitable multi-heavy minerals and rare-earth elements. With poorly established safety and health practices in operating plant, amang poses extremely high radioactivity problem associated with high occupational ionizing radiation exposures to workers and continuously impacting the local environment with radioactive contamination from industrial effluent and solid waste into lithosphere and water bodies. The radioactivity level of 238U and 232Th series in the mineral varies from few hundreds up to ~200,000 and ~400,000 Bq kg-1 respectively and are potential to yield more than ~ 30,000 nGy h-1 of gamma (γ) radiation exposure to plant workers. The study found out that for 8 h of work time, a worker is estimated to receive an average effective dose of 0.1 mSv per day from external γ radiation source with a maximum up to 2 mSv per day for extreme exposure situation. Interferences of different exposure routes for examples inhalation of equivalent equilibrium concentration (ECC) of 222Rn and 220Rn progenies and airborne long-lived α particles from the dusty working environment could pose a higher total effective dose as much as 5 mSv per day and 115 mSv per year. The value is 5 times higher than the annual dose limit for designated radiation worker (20 mSv) in Peninsular Malaysia. The study found that 41% of the total received an effective dose received by a worker is contributed by 222Rn, 32% of airborne particulates and dust, 23% from external γ exposure and 4% from 220Rn. Based on radioecological risk assessment, the study found out that the aquatic environment is the highly exposed group to ionizing radiation from industrial effluent discharge and sand residues. With the impotent establishment of radiation protection in the industry, plus the country newly introduced long-term plan to revive tin mining as well as its accessory amang mineral, it is necessary for the government to harmonize current regulation to improve the worker safety and health as well as sustaining local environment.
    Matched MeSH terms: Gamma Rays
  13. Asfahani J, Samuding K, Mostapa R, Othman O
    Appl Radiat Isot, 2021 Jan;167:109296.
    PMID: 33022484 DOI: 10.1016/j.apradiso.2020.109296
    Natural gamma ray well logging technique is used to characterize the radioactivity (GR) laterally and vertically in Banting district, SW of Malaysia. Seven drilled boreholes, along N-S profile with their natural gamma ray records are utilized to compute the heat production (HP) parameter, based on the Bucker and Rybach relationship.The analysis of 3467 measured points in those boreholes indicates that GR varies between 6.24 API and 358.4 API with an average of 79.95 API, while HP varies between 0.086 and 5.65 μw/m3 with an average of 1.25 μw/m3.The multi-fractal Concentration-Number (C-N) is used to characterize the radioactivity and heat production variations and to isolate different GR and HP populations in the study region. The high radioactivity and heat production ranges are mainly related to the silty clay layers, accompanied by uranium and thorium.
    Matched MeSH terms: Gamma Rays
  14. Hossain MA, Islam JMM, Hoque MM, Nahar S, Khan MA
    Heliyon, 2021 Jan;7(1):e05881.
    PMID: 33458447 DOI: 10.1016/j.heliyon.2020.e05881
    Sodium alginate oligomers were tested for tea plant growth promoter and anti-fungal agent in this experiment. Sodium alginate solutions were irradiated by Co-60 gamma radiation with different radiation doses to produce the oligomers. Irradiated solutions were then diluted into 150, 300 and 500 ppm prior to foliar application. Solutions were applied through foliar spraying at 7 days interval and the best response of tea plants in terms of various attributes were recorded. Tea buds were collected in 10 days of interval and the growth attributes like- total number of buds, fresh weight of buds, average leaf area and weight per bud, weight of made tea etc. were calculated. The experiment was continued up to 12 weeks and the attributes were averaged to get results per plucking. 12 kGy radiation doses along with 300ppm solution showed the best results and about 36% increase in productivity was found based on the fresh weight of buds. Total fungal count in tea leaves was also found to be reduced greatly. Based on the present study, irradiated sodium alginate could be used as safe and environmentally friendly agent to increase tea production.
    Matched MeSH terms: Gamma Rays
  15. Pati S, Chatterji A, Dash BP, Raveen Nelson B, Sarkar T, Shahimi S, et al.
    Polymers (Basel), 2020 Oct 15;12(10).
    PMID: 33076234 DOI: 10.3390/polym12102361
    Natural product extraction is ingenuity that permits the mass manufacturing of specific products in a cost-effective manner. With the aim of obtaining an alternative chitosan supply, the carapace of dead horseshoe crabs seemed feasible. This sparked an investigation of the structural changes and antioxidant capacity of horseshoe crab chitosan (HCH) by γ-irradiation using 60Co source. Chitosan was extracted from the horseshoe crab (Tachypleus gigas; Müller) carapace using heterogeneous chemical N-deacetylation of chitin, followed by the irradiation of HCH using 60Co at a dose-dependent rate of 10 kGy/hour. The average molecular weight was determined by the viscosimetric method. Regarding the chemical properties, the crystal-like structures obtained from γ-irradiated chitosan powders were determined using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. The change in chitosan structure was evident with dose-dependent rates between 10 and 20 kGy/hour. The antioxidant properties of horseshoe crab-derived chitosan were evaluated in vitro. The 20 kGy γ-irradiation applied to chitosan changed the structure and reduced the molecular weight, providing sufficient degradation for an increase in antioxidant activity. Our findings indicate that horseshoe crab chitosan can be employed for both scald-wound healing and long-term food preservation due to its buffer-like and radical ion scavenging ability.
    Matched MeSH terms: Gamma Rays
  16. Pati S, Jena P, Shahimi S, Nelson BR, Acharya D, Dash BP, et al.
    Data Brief, 2020 Oct;32:106081.
    PMID: 32775581 DOI: 10.1016/j.dib.2020.106081
    This dataset presents morphological features, elemental composition and functional groups of different pre- and post-gamma (γ)-irradiated chitosan (10kGy & 20kGy) prepared from shrimp waste. The γ-irradiated chitosan was characterized using Fourier transfer infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses. Thermogravimetry/differential thermal analysis (TG/DTA) were performed using Perkin Elmer Pyris Diamond DSC with a heating rate of 10 °C/minute and dynamic synthetic atmospheric air set at flow rate of 100 ml/minute. We observed γ-irradiated chitosan to have shorter polymer size, small pores and compacted structure with active alkyl and hydroxyl groups when compared to non-irradiated chitosan. Our data provides baseline understanding for structure of shrimp chitosan after 60Co exposure which means, the biopolymer becomes more stable and is considered suitable for vast food industry applications.
    Matched MeSH terms: Gamma Rays
  17. Jamal AbuAlRoos N, Azman MN, Baharul Amin NA, Zainon R
    Phys Med, 2020 Oct;78:48-57.
    PMID: 32942196 DOI: 10.1016/j.ejmp.2020.08.017
    PURPOSE: The main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.

    MATERIALS AND METHODS: The elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40-50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.

    RESULTS: This study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19-5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.

    CONCLUSION: This study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.

    Matched MeSH terms: Gamma Rays
  18. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
    Matched MeSH terms: Gamma Rays
  19. Bradley DA, Nawi SNM, Khandaker MU, Almugren KS, Sani SFA
    Appl Radiat Isot, 2020 Jul;161:109168.
    PMID: 32321700 DOI: 10.1016/j.apradiso.2020.109168
    Present work concerns polymer pencil-lead graphite (PPLG) and the potential use of these in elucidating irradiation-driven structural alterations. The study provides detailed analysis of radiation-induced structural interaction changes and the associated luminescence that originates from the energy absorption. Thermally stimulated emission from the different occupied defect energy levels reflects the received radiation dose, different for the different diameter PPLGs. The PPLG samples have been exposed to photon irradiation, specifically x-ray doses ranging from 1 to 10 Gy, extended to 30-200 Gy through use of a60Co gamma-ray source. Trapping parameters such as order of kinetics, activation energy and frequency factor are estimated using Chen's peak-shape method for a fixed-dose of 30 Gy. X-ray diffractometry was used to characterize the crystal structure of the PPLG, the aim being to identify the degree of structural order, atomic spacing and lattice constants of the various irradiated PPLG samples. The mean atomic spacing and degree of structural order for the different diameter PPLG are found to be 0.3332 nm and 26.6° respectively. Photoluminescence spectra from PPLG arising from diode laser excitation at 532 nm consist of two adjacent peaks, 602 nm (absorption) and 1074 nm (emission), with mean energy band gap values within the range 1.113-1.133 eV.
    Matched MeSH terms: Gamma Rays
  20. Zainudin Nh M, R A, W N R
    J Biomed Phys Eng, 2020 Jun;10(3):319-328.
    PMID: 32637376 DOI: 10.31661/jbpe.v0i0.1135
    Background: Radiation induced bystander effects (RIBEs) occurs in unirradiated cells exhibiting indirect biological effect as a consequence of signals from other irradiated cells in the population.

    Objective: In this study, bystander effects in MCF-7 breast cancer cells and hFOB 1.19 normal osteoblast cells irradiated with gamma emitting HDR Brachytherapy Ir-192 source were investigated.

    Material and Methods: In this in-vitro study, bystander effect stimulation was conducted using medium transfer technique of irradiated cells to the non-irradiated bystander cells. Cell viability, reactive oxygen species (ROS) generation and colony forming assay was employed to evaluate the effect.

    Results: Results indicate that the exposure to the medium irradiated MCF-7 induced significant bystander killing and decreased the survival fraction of bystander MCF-7 and hFOB from 1.19 to 81.70 % and 65.44 %, respectively. A significant decrease in survival fraction was observed for hFOB 1.19 bystander cells (p < 0.05). We found that the rate of hFOB 1.19 cell growth significantly decreases to 85.5% when added with media from irradiated cells. The ROS levels of bystander cells for both cell lines were observed to have an increase even after 4 h of treatment. Our results suggest the presence of bystander effects in unirradiated cells exposed to the irradiated medium.

    Conclusion: These data provide evidence that irradiated MCF-7 breast cancer cells can induce bystander death in unirradiated MCF-7 and hFOB 1.19 bystander cells. Increase in cell death could also be mediated by the ROS generation during the irradiation with HDR brachytherapy.

    Matched MeSH terms: Gamma Rays
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links