Displaying publications 1 - 20 of 285 in total

Abstract:
Sort:
  1. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects
  2. Lim MN, Lau NS, Chang KM, Leong CF, Zakaria Z
    Singapore Med J, 2007 Oct;48(10):932-8.
    PMID: 17909680
    The multidrug resistance gene, MDR1, is one of the genes responsible for resistance to chemotherapy in the treatment of leukaemia and other cancers. The discovery of RNA interference in mammalian cells has provided a powerful tool to inhibit the expression of this gene. However, very little is known about the transfection of leukaemia cells with short interfering RNA (siRNA) targeted at MDR1. This study aims to evaluate the effectiveness of two chemically-synthesised siRNA in modulating MDR1 gene and inhibiting P-glycoprotein expression in leukaemic cells. We also evaluated two siRNA delivery methods in this study.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics
  3. Vincent-Chong VK, Salahshourifar I, Karen-Ng LP, Siow MY, Kallarakkal TG, Ramanathan A, et al.
    ScientificWorldJournal, 2014;2014:897523.
    PMID: 25401159 DOI: 10.1155/2014/897523
    Matrix metalloproteinase 13 (MMP13) plays a central role in the MMP activation cascade that enables degradation of the extracellular matrix and basement membranes, and it is identified as a potential driver in oral carcinogenesis. Therefore, this study aims to determine the copy number, mRNA, and protein expression of MMP13 in oral squamous cell carcinoma (OSCC) and to associate these expressions with clinicopathological parameters. Copy number, mRNA, and protein expression analysis of MMP13 were determined using real-time quantitative PCR and immunohistochemistry methods in OSCC samples. The correlations between MMP13 expressions and clinicopathological parameters were evaluated, and the significance of MMP13 as a prognostic factor was determined. Despite discrepancies between gene amplification and mRNA and protein overexpression rates, OSCC cases showed high amplification of MMP13 and overexpression of MMP13 at both mRNA and protein levels. High level of MMP13 protein expression showed a significant correlation with lymph node metastasis (P = 0.011) and tumor staging (P = 0.002). Multivariate Cox regression model analysis revealed that high level of mRNA and protein expression of MMP13 were significantly associated with poor prognosis (P < 0.050). Taken together, these observations indicate that the MMP13 protein overexpression could be considered as a prognostic marker of OSCC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  4. Siow MY, Ng LP, Vincent-Chong VK, Jamaludin M, Abraham MT, Abdul Rahman ZA, et al.
    Oral Dis, 2014 May;20(4):345-51.
    PMID: 23651447 DOI: 10.1111/odi.12118
    To identify differentially expressed miRNA between oral squamous cell carcinoma (OSCC) and non-cancer (NC) and to associate these with clinico-pathological parameters.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  5. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, et al.
    Oral Dis, 2012 Jul;18(5):469-76.
    PMID: 22251088 DOI: 10.1111/j.1601-0825.2011.01894.x
    Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  6. Auzair LB, Vincent-Chong VK, Ghani WM, Kallarakkal TG, Ramanathan A, Lee CE, et al.
    Eur Arch Otorhinolaryngol, 2016 Jul;273(7):1885-93.
    PMID: 26138391 DOI: 10.1007/s00405-015-3703-9
    Caveolin-1 (Cav-1) and Actin-Related Protein 2/3 Complex, Subunit 1B (ARPC1B) have been implicated in various human cancers, yet its role in tumorigenesis remains controversial. Therefore, this study aims to determine the protein expression of these two genes in oral squamous cell carcinomas (OSCCs) and to evaluate the clinical and prognostic impact of these genes in OSCC. Protein expressions of these two genes were determined by immunohistochemistry technique. The association between Cav-1 and ARPC1B with clinico-pathological parameters was evaluated by Chi-square test (or Fisher exact test where appropriate). Correlation between the protein expressions of these 2 genes with survival was analyzed using Kaplan-Meier and Cox regression models. Cav-1 and ARPC1B were found to be significantly over-expressed in OSCC compared to normal oral mucosa (p = 0.002 and p = 0.033, respectively). Low level of ARPC1B protein expression showed a significant correlation with lymph node metastasis (LNM) (p = 0.010) and advanced tumor staging (p = 0.003). Kaplan-Meier survival analyses demonstrated that patients with over-expression of Cav-1 protein were associated with poor prognosis (p = 0.030). Adjusted multivariate Cox regression model revealed that over-expression of Cav-1 remained as an independent significant prognostic factor for OSCC (HRR = 2.700, 95 % CI 1.013-7.198, p = 0.047). This study demonstrated that low-expression of ARPC1B is significantly associated with LNM and advanced tumor staging whereas high expression of Cav-1 can be a prognostic indicator for poor prognosis in OSCC patients.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  7. Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C
    Asian Pac J Cancer Prev, 2014;15(21):9071-5.
    PMID: 25422181
    BACKGROUND: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined.

    MATERIALS AND METHODS: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology.

    RESULTS: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues.

    CONCLUSIONS: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  8. Hor YZ, Salvamani S, Gunasekaran B, Yian KR
    Yale J Biol Med, 2023 Dec;96(4):511-526.
    PMID: 38161583 DOI: 10.59249/VHYE2306
    Colorectal Neoplasia Differentially Expressed (CRNDE), a long non-coding RNA that was initially identified as aberrantly expressed in colorectal cancer (CRC) has also been observed to exhibit elevated expression in various other human malignancies. Recent research has accumulated substantial evidence implicating CRNDE as an oncogenic player, exerting influence over critical cellular processes linked to cancer progression. Particularly, its regulatory interactions with microRNAs and proteins have been shown to modulate pathways that contribute to carcinogenesis and tumorigenesis. This review will comprehensively outline the roles of CRNDE in colorectal, liver, glioma, lung, cervical, gastric and prostate cancer, elucidating the mechanisms involved in modulating proliferation, apoptosis, migration, invasion, angiogenesis, and radio/chemoresistance. Furthermore, the review highlights CRNDE's potential as a multifaceted biomarker, owing to its presence in diverse biological samples and stable properties, thereby underscoring its diagnostic, therapeutic, and prognostic applications. This review aims to provide comprehensive insights of CRNDE-mediated oncogenesis and identify CRNDE as a promising target for future clinical interventions.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics
  9. Hiu JJ, Yap MKK
    Int J Biol Macromol, 2021 Aug 01;184:776-786.
    PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145
    Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects
  10. Lee HM, Lo KW, Wei W, Tsao SW, Chung GTY, Ibrahim MH, et al.
    J Pathol, 2017 05;242(1):62-72.
    PMID: 28240350 DOI: 10.1002/path.4879
    Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1, and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is overexpressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/physiology
  11. Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, et al.
    Cell Oncol (Dordr), 2023 Aug;46(4):969-985.
    PMID: 37014552 DOI: 10.1007/s13402-023-00791-z
    PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate, in which about 90% of patients harbor somatic oncogenic point mutations in KRAS. SPRY family genes have been recognized as crucial negative regulators of Ras/Raf/ERK signaling. Here, we investigate the expression and role of SPRY proteins in PDAC.

    METHODS: Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism.

    RESULTS: SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling.

    CONCLUSION: High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.

    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  12. Horne HN, Beena Devi CR, Sung H, Tang TS, Rosenberg PS, Hewitt SM, et al.
    Breast Cancer Res Treat, 2015 Jan;149(1):285-91.
    PMID: 25537643 DOI: 10.1007/s10549-014-3243-9
    Hormone receptor (HR) negative breast cancers are relatively more common in low-risk than high-risk countries and/or populations. However, the absolute variations between these different populations are not well established given the limited number of cancer registries with incidence rate data by breast cancer subtype. We, therefore, used two unique population-based resources with molecular data to compare incidence rates for the 'intrinsic' breast cancer subtypes between a low-risk Asian population in Malaysia and high-risk non-Hispanic white population in the National Cancer Institute's surveillance, epidemiology, and end results 18 registries database (SEER 18). The intrinsic breast cancer subtypes were recapitulated with the joint expression of the HRs (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor-2 (HER2). Invasive breast cancer incidence rates overall were fivefold greater in SEER 18 than in Malaysia. The majority of breast cancers were HR-positive in SEER 18 and HR-negative in Malaysia. Notwithstanding the greater relative distribution for HR-negative cancers in Malaysia, there was a greater absolute risk for all subtypes in SEER 18; incidence rates were nearly 7-fold higher for HR-positive and 2-fold higher for HR-negative cancers in SEER 18. Despite the well-established relative breast cancer differences between low-risk and high-risk countries and/or populations, there was a greater absolute risk for HR-positive and HR-negative subtypes in the US than Malaysia. Additional analytical studies are sorely needed to determine the factors responsible for the elevated risk of all subtypes of breast cancer in high-risk countries like the United States.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/genetics
  13. Ohba K, Ichiyama K, Yajima M, Gemma N, Nikaido M, Wu Q, et al.
    PLoS One, 2014;9(5):e97787.
    PMID: 24858917 DOI: 10.1371/journal.pone.0097787
    High prevalence of infection with high-risk human papilloma virus (HPV) ranging from 25 to 100% (average 31%) was observed in breast cancer (BC) patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER) showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B) which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  14. Jusoh AR, Mohan SV, Lu Ping T, Tengku Din TADAAB, Haron J, Romli RC, et al.
    Asian Pac J Cancer Prev, 2021 May 01;22(5):1375-1381.
    PMID: 34048164 DOI: 10.31557/APJCP.2021.22.5.1375
    OBJECTIVE: This study aimed to characterize the miRNA expression profiles from plasma samples of our local breast cancer patients in comparison to healthy control by using miRNA PCR Array.

    METHODS: In this study, plasma miRNA profiles from eight early-stage breast cancer patients and nine age-matched (± 2 years) healthy controls were characterized by miRNA array-based approach, followed by differential gene expression analysis, Independent T-test and construction of Receiver Operating Characteristic (ROC) curve to determine the capability of the assays to discriminate between breast cancer and the healthy control.

    RESULTS: Based on the 372-miRNAs microarray profiling, a set of 40 differential miRNAs was extracted regarding to the fold change value at 2 and above. We further sub grouped 40 miRNAs of breast cancer patients that were significantly expressed at 2-fold change and higher. In this set, we discovered that 24 miRNAs were significantly upregulated and 16 miRNAs were significantly downregulated in breast cancer patients, as compared to the miRNA expression of healthy subjects. ROC curve analysis revealed that seven miRNAs (miR-125b-5p, miR-142-3p, miR-145-5p, miR-193a-5p, miR-27b-3p, miR-22-5p and miR-423-5p) had area under curve (AUC) value > 0.7 (AUC p-value < 0.05). Overlapping findings from differential gene expression analysis, ROC analysis, and Independent T-Test resulted in three miRNAs (miR-27b-3p, miR-22-5p, miR-145-5p). Cohen's effect size for these three miRNAs was large with d value are more than 0.95.

    CONCLUSION: miR-27b-3p, miR-22-5p, miR-145-5p could be potential biomarkers to distinguish breast cancer patients from healthy controls. A validation study for these three miRNAs in an external set of samples is ongoing.
    .

    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  15. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects
  16. Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, et al.
    Oncol Rep, 2016 Jan;35(1):13-25.
    PMID: 26531053 DOI: 10.3892/or.2015.4371
    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects
  17. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  18. Said NA, Simpson KJ, Williams ED
    Cells Tissues Organs (Print), 2013;197(6):424-34.
    PMID: 23774256 DOI: 10.1159/000351717
    Enormous progress has been made towards understanding the role of specific factors in the process of epithelial-mesenchymal transition (EMT); however, the complex underlying pathways and the transient nature of the transition continues to present significant challenges. Targeting tumour cell plasticity underpinning EMT is an attractive strategy to combat metastasis. Global gene expression profiling and high-content analyses are among the strategies employed to identify novel EMT regulators. In this review, we highlight several approaches to systematically interrogate key pathways involved in EMT, with particular emphasis on the features of multiparametric, high-content imaging screening strategies that lend themselves to the systematic discovery of highly significant modulators of tumour cell plasticity.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic
  19. Zainul Abidin FN, Westhead DR
    Nucleic Acids Res, 2017 04 20;45(7):e53.
    PMID: 27994031 DOI: 10.1093/nar/gkw1270
    Clustering is used widely in 'omics' studies and is often tackled with standard methods, e.g. hierarchical clustering. However, the increasing need for integration of multiple data sets leads to a requirement for clustering methods applicable to mixed data types, where the straightforward application of standard methods is not necessarily the best approach. A particularly common problem involves clustering entities characterized by a mixture of binary data (e.g. presence/absence of mutations, binding, motifs and epigenetic marks) and continuous data (e.g. gene expression, protein abundance, metabolite levels). Here, we present a generic method based on a probabilistic model for clustering this type of data, and illustrate its application to genetic regulation and the clustering of cancer samples. We show that the resulting clusters lead to useful hypotheses: in the case of genetic regulation these concern regulation of groups of genes by specific sets of transcription factors and in the case of cancer samples combinations of gene mutations are related to patterns of gene expression. The clusters have potential mechanistic significance and in the latter case are significantly linked to survival. The method is available as a stand-alone software package (GNU General Public Licence) from http://github.com/BioToolsLeeds/FlexiCoClusteringPackage.git.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  20. Ismail AF, Oskay Halacli S, Babteen N, De Piano M, Martin TA, Jiang WG, et al.
    Biochem. J., 2017 Mar 24;474(8):1333-1346.
    PMID: 28232500 DOI: 10.1042/BCJ20160875
    Urothelial bladder cancer is a major cause of morbidity and mortality worldwide, causing an estimated 150 000 deaths per year. Whilst non-muscle-invasive bladder tumours can be effectively treated, with high survival rates, many tumours recur, and some will progress to muscle-invasive disease with a much poorer long-term prognosis. Thus, there is a pressing need to understand the molecular transitions occurring within the progression of bladder cancer to an invasive disease. Tumour invasion is often associated with a down-regulation of E-cadherin expression concomitant with a suppression of cell:cell junctions, and decreased levels of E-cadherin expression have been reported in higher grade urothelial bladder tumours. We find that expression of E-cadherin in a panel of bladder cancer cell lines correlated with the presence of cell:cell junctions and the level of PAK5 expression. Interestingly, exogenous PAK5 has recently been described to be associated with cell:cell junctions and we now find that endogenous PAK5 is localised to cell junctions and interacts with an E-cadherin complex. Moreover, depletion of PAK5 expression significantly reduced junctional integrity. These data suggest a role for PAK5 in maintaining junctional stability and we find that, in both our own patient samples and a commercially available dataset, PAK5mRNA levels are reduced in human bladder cancer compared with normal controls. Taken together, the present study proposes that PAK5 expression levels could be used as a novel prognostic marker for bladder cancer progression.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links