Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Jamaludin NA, Mohammed Akib NA
    Sci Rep, 2021 Sep 07;11(1):17800.
    PMID: 34493747 DOI: 10.1038/s41598-021-97324-1
    The Merbok Estuary comprises one of the largest remaining mangrove forests in Peninsular Malaysia. Its value is significant as it provides important services to local and global communities. It also offers a unique opportunity to study the structure and functioning of mangrove ecosystems. However, its biodiversity is still partially inventoried, limiting its research value. A recent checklist based on morphological examination, reported 138 fish species residing, frequenting or subject to entering the Merbok Estuary. In this work, we reassessed the fish diversity of the Merbok Estuary by DNA barcoding 350 specimens assignable to 134 species initially identified based on morphology. Our results consistently revealed the presence of 139 Molecular Operational Taxonomic Units (MOTUs). 123 of them are congruent with morphology-based species delimitation (one species = one MOTU). In two cases, two morphological species share the same MOTU (two species = one MOTU), while we unveiled cryptic diversity (i.e. COI-based genetic variability > 2%) within seven other species (one species = two MOTUs), calling for further taxonomic investigations. This study provides a comprehensive core-list of fish taxa in Merbok Estuary, demonstrating the advantages of combining morphological and molecular evidence to describe diverse but still poorly studied tropical fish communities. It also delivers a large DNA reference collection for brackish fishes occurring in this region which will facilitate further biodiversity-oriented research studies and management activities.
    Matched MeSH terms: Gene Library
  2. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV
    Gene, 2015 Oct 15;571(1):71-80.
    PMID: 26115767 DOI: 10.1016/j.gene.2015.06.050
    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant.
    Matched MeSH terms: Gene Library
  3. Yew CW, Kumar SV
    Mol Biol Rep, 2012 Feb;39(2):1783-90.
    PMID: 21625851 DOI: 10.1007/s11033-011-0919-7
    MicroRNAs (miRNAs) are small RNAs (sRNAs) with approximately 21-24 nucleotides in length. They regulate the expression of target genes through the mechanism of RNA silencing. Conventional isolation and cloning of miRNAs methods are usually technical demanding and inefficient. These limitations include the requirement for high amounts of starting total RNA, inefficient ligation of linkers, high amount of PCR artifacts and bias in the formation of short miRNA-concatamers. Here we describe in detail a method that uses 80 μg of total RNA as the starting material. Enhancement of the ligation of sRNAs and linkers with the use of polyethylene glycol (PEG8000) was described. PCR artifacts from the amplification of reverse-transcribed sRNAs were greatly decreased by using lower concentrations of primers and reducing the number of amplification cycles. Large concatamers with up to 1 kb in size with around 20 sRNAs/concatamer were obtained by using an optimized reaction condition. This protocol provide researchers with a rapid, efficient and cost-effective method for the construction of miRNA profiles from plant tissues containing low amounts of total RNA, such as fruit flesh and senescent leaves.
    Matched MeSH terms: Gene Library*
  4. Yeo FK, Wang Y, Vozabova T, Huneau C, Leroy P, Chalhoub B, et al.
    Theor Appl Genet, 2016 Feb;129(2):289-304.
    PMID: 26542283 DOI: 10.1007/s00122-015-2627-5
    Rphq2, a minor gene for partial resistance to Puccinia hordei , was physically mapped in a 188 kbp introgression with suppressed recombination between haplotypes of rphq2 and Rphq2 barley cultivars.
    Matched MeSH terms: Gene Library
  5. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Gene Library
  6. Wong YC, Abd El Ghany M, Naeem R, Lee KW, Tan YC, Pain A, et al.
    Front Microbiol, 2016;7:1288.
    PMID: 27597847 DOI: 10.3389/fmicb.2016.01288
    Burkholderia cenocepacia infection often leads to fatal cepacia syndrome in cystic fibrosis patients. However, antibiotic therapy rarely results in complete eradication of the pathogen due to its intrinsic resistance to many clinically available antibiotics. Recent attention has turned to the identification of essential genes as the proteins encoded by these genes may serve as potential targets for development of novel antimicrobials. In this study, we utilized TraDIS (Transposon Directed Insertion-site Sequencing) as a genome-wide screening tool to facilitate the identification of B. cenocepacia genes essential for its growth and viability. A transposon mutant pool consisting of approximately 500,000 mutants was successfully constructed, with more than 400,000 unique transposon insertion sites identified by computational analysis of TraDIS datasets. The saturated library allowed for the identification of 383 genes that were predicted to be essential in B. cenocepacia. We extended the application of TraDIS to identify conditionally essential genes required for in vitro growth and revealed an additional repertoire of 439 genes to be crucial for B. cenocepacia growth under nutrient-depleted conditions. The library of B. cenocepacia mutants can subsequently be subjected to various biologically related conditions to facilitate the discovery of genes involved in niche adaptation as well as pathogenicity and virulence.
    Matched MeSH terms: Gene Library
  7. Wong KK, Noor-Arniwati Mat-Daud, Roohaida Othman, Zubir Din, Wan KL, Salmijah Surif
    The cockle, Anadara granosa, was experimentally exposed to low (0.1 mg/L) and sublethal (1.0 mg/L) doses of copper (Cu) for a period of 24 hrs. Significant increase in Cu concentrations in whole tissues and hepatopancreas compared to control animals were observed. In order to study the effect of copper exposure at molecular levels, a subtractive cDNA library was constructed from the hepatopancreas of cockles exposed to 1.0 mg/L Cu. Screening of the subtractive cDNA library using reverse northern analysis resulted in several differentially expressed genes, including one that codes for metallothionein (MT). The complete coding sequence of the MT gene (designated as AnaMT2) reveals an open reading frame of 234 bp in length that encodes a 77 amino acid polypeptide as revealed by the deduced amino acid composition. Although showing similarities with other molluscan MTs, AnaMT2 can be distinguished by its lower glycine and higher asparagine and proline content. Expression analysis of the AnaMT2 by northern analysis indicated higher mRNA level in cockle exposed to 1.0 mg/L Cu and was undetectable in those treated with 0.1 mg/L. This suggests that AnaMT2 represents a primarily inducible MT not highly expressed under basal conditions.
    Matched MeSH terms: Gene Library
  8. Wan KL, Chong SP, Ng ST, Shirley MW, Tomley FM, Jangi MS
    Int J Parasitol, 1999 Dec;29(12):1885-92.
    PMID: 10961844
    A study of about 500 expressed sequence tags (ESTs), derived from a merozoite cDNA library, was initiated as an approach to generate a larger pool of gene information on Eimeria tenella. Of the ESTs, 47.7% had matches with entries in the databases, including ribosomal proteins, metabolic enzymes and proteins with other functions, of which 14.3% represented previously known E. tenella genes. Thus over 50% of the ESTs had no significant database matches. The E. tenella EST dataset contained a range of highly abundant genes comparable with that found in the EST dataset of T. gondii and may thus reflect the importance of such molecules in the biology of the apicomplexan organisms. However, comparison of the two datasets revealed very few homologies between sequences of apical organelle molecules, and provides evidence for sequence divergence between these closely-related parasites. The data presented underpin the potential value of the EST strategy for the discovery of novel genes and may allow for a more rapid increase in the knowledge and understanding of gene expression in the merozoite life cycle stage of Eimeria spp.
    Matched MeSH terms: Gene Library
  9. Usman AR, Khandaker MU, Haba H, Otuka N, Murakami M, Komori Y
    Appl Radiat Isot, 2016 08;114:104-13.
    PMID: 27227905 DOI: 10.1016/j.apradiso.2016.04.027
    The excitation functions were measured for the (nat)Cu(α,x)(66,67)Ga,(65)Zn,(57,58,60)Co reactions in the energy range of 16.5 -50MeV. A conventional stacked-foil activation technique combined with HPGe γ-ray spectrometry was employed to determine cross-sections. The measured cross-sections were critically compared with relevant previous experimental data and also with the evaluated data in the TENDL-2014 library. Present results confirmed some of the previous experimental data, whereas only a partial agreement was found with the evaluated data. The measured data are useful for reducing the existing discrepancies in the literature, to improve the nuclear reaction model codes, and to enrich the experimental database towards various applications.
    Matched MeSH terms: Gene Library
  10. Thanh T, Chi VT, Abdullah MP, Omar H, Noroozi M, Ky H, et al.
    Mol Biol Rep, 2011 Jan;38(1):177-82.
    PMID: 20354903 DOI: 10.1007/s11033-010-0092-4
    Green microalga Ankistrodesmus convolutus Corda is a fast growing alga which produces appreciable amount of carotenoids and polyunsaturated fatty acids. To our knowledge, this is the first report on the construction of cDNA library and preliminary analysis of ESTs for this species. The titers of the primary and amplified cDNA libraries were 1.1×10(6) and 6.0×10(9) pfu/ml respectively. The percentage of recombinants was 97% in the primary library and a total of 337 out of 415 original cDNA clones selected randomly contained inserts ranging from 600 to 1,500 bps. A total of 201 individual ESTs with sizes ranging from 390 to 1,038 bps were then analyzed and the BLASTX score revealed that 35.8% of the sequences were classified as strong match, 38.3% as nominal and 25.9% as weak match. Among the ESTs with known putative function, 21.4% of them were found to be related to gene expression, 14.4% ESTs to photosynthesis, 10.9% ESTs to metabolism, 5.5% ESTs to miscellaneous, 2.0% to stress response, and the remaining 45.8% were classified as novel genes. Analysis of ESTs described in this paper can be an effective approach to isolate and characterize new genes from A. convolutus and thus the sequences obtained represented a significant contribution to the extensive database of sequences from green microalgae.
    Matched MeSH terms: Gene Library*
  11. Tham HW, Balasubramaniam VR, Chew MF, Ahmad H, Hassan SS
    J Infect Dev Ctries, 2015 Dec 30;9(12):1338-49.
    PMID: 26719940 DOI: 10.3855/jidc.6422
    INTRODUCTION: Dengue virus (DENV) is principally transmitted by the Aedes aegypti mosquito. To date, mosquito population control remains the key strategy for reducing the continuing spread of DENV. The focus on the development of new vector control strategies through an understanding of the mosquito-virus relationship is essential, especially targeting the midgut, which is the first mosquito organ exposed to DENV infection.
    METHODOLOGY: A cDNA library derived from female adult A. aegypti mosquito midgut cells was established using the switching mechanism at the 5' end of the RNA transcript (SMART), in combination with a highly potent recombination machinery of Saccharomyces cerevisiae. Gal4-based yeast two-hybrid (Y2H) assays were performed against DENV-2 proteins (E, prM, M, and NS1). Mammalian two-hybrid (M2H) and double immunofluorescence assays (IFA) were conducted to validate the authenticity of the three selected interactions.
    RESULTS: The cDNA library was of good quality based on its transformation efficiency, cell density, titer, and the percentage of insert size. A total of 36 midgut proteins interacting with DENV-2 proteins were identified, some involved in nucleic acid transcription, oxidoreductase activity, peptidase activity, and ion binding. Positive outcomes were obtained from the three selected interactions validated using M2H and double IFA assays.
    CONCLUSIONS: The identified proteins have different biological activities that may aid in the virus replication pathway. Therefore, the midgut cDNA library is a valuable tool for identifying DENV-2 interacting proteins. The positive outcomes of the three selected proteins validated supported the quality of the cDNA library and the robustness of the Y2H mechanisms.
    Matched MeSH terms: Gene Library
  12. Teo MYM, Ng JJC, Fong JY, Hwang JS, Song AA, Lim RLH, et al.
    PeerJ, 2021;9:e11063.
    PMID: 33959410 DOI: 10.7717/peerj.11063
    Background: KRAS oncogenes harboring codon G12 and G13 substitutions are considered gatekeeper mutations which drive oncogenesis in many cancers. To date, there are still no target-specific vaccines or drugs available against this genotype, thus reinforcing the need towards the development of targeted therapies such as immunotoxins.

    Methods: This study aims to develop a recombinant anti-mKRAS scFv-fused mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin that is capable of recognizing and eradicating codon-12 mutated k-ras antigen abnormal cells. One G13D peptide mimotope (164-D) and one G12V peptide mimotope (68-V) were designed to elicit antigen specific IgG titres against mutated K-ras antigens in immunised Balb/c mice. The RNA was extracted from splenocytes following ELISA confirmation on post-immunized mice sera and was reverse transcribed into cDNA. The scFv combinatorial library was constructed from cDNA repertoire of variable regions of heavy chain (VH) and light chain (VL) fusions connected by a flexible glycine-serine linker, using splicing by overlap extension PCR (SOE-PCR). Anti-mKRAS G12V and G13D scFvs were cloned in pCANTAB5E phagemid and superinfected with helper phage. After few rounds of bio-panning, a specific mKRAS G12V and G13D scFv antibody against G12V and G13D control mimotope was identified and confirmed using ELISA without any cross-reactivity with other mimotopes or controls. Subsequently, the anti-mKRAS scFv was fused to mHALT-1 using SOE-PCR and cloned in pET22b vector. Expressed recombinant immunotoxins were analyzed for their effects on cell proliferation by the MTT assay and targeted specificity by cell-based ELISA on KRAS-positive and KRAS-negative cancer cells.

    Results: The VH and VL genes from spleen RNA of mice immunized with 164-D and 68-V were amplified and randomly linked together, using SOE-PCR producing band sizes about 750 bp. Anti-mKRAS G12V and G13D scFvs were constructed in phagemid pCANTAB5E vectors with a library containing 3.4 × 106 and 2.9 × 106 individual clones, respectively. After three rounds of bio-panning, the anti-mKRAS G12V-34 scFv antibody against G12V control mimotope was identified and confirmed without any cross-reactivity with other controls using ELISA. Anti-mKRAS G12V-34 scFv fragment was fused to mHALT-1 toxin and cloned in pET22b vector with expression as inclusion bodies in E. coli BL21(DE3) (molecular weight of ~46.8 kDa). After successful solubilization and refolding, the mHALT-1-scFv immunotoxin exhibited cytotoxic effects on SW-480 colorectal cancer cells with IC50 of 25.39 μg/mL, with minimal cytotoxicity effect on NHDF cells.

    Discussion: These results suggested that the development of such immunotoxins is potentially useful as an immunotherapeutic application against KRAS-positive malignancies.

    Matched MeSH terms: Gene Library
  13. Teh KY, Afifudeen CLW, Aziz A, Wong LL, Loh SH, Cha TS
    Data Brief, 2019 Dec;27:104680.
    PMID: 31720332 DOI: 10.1016/j.dib.2019.104680
    Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises de novo whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); Chlorella vulgaris UMT-M1 and Messastrum gracile SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform. Sequencing yielded raw reads amounting to ∼11 Gb in total bases for both species and was further assembled de novo. Genome assembly resulted in a 50.15 Mbp and 60.83 Mbp genome size for UMT-M1 and SE-MC4, respectively. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VJNP00000000 (UMT-M1) and VIYE00000000 (SE-MC4).
    Matched MeSH terms: Gene Library
  14. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, et al.
    Mol Microbiol, 2005 Jan;55(2):469-81.
    PMID: 15659164
    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
    Matched MeSH terms: Gene Library
  15. Tan HY, Sieo CC, Lee CM, Abdullah N, Liang JB, Ho YW
    J Microbiol, 2011 Jun;49(3):492-8.
    PMID: 21717338 DOI: 10.1007/s12275-011-0319-7
    Molecular diversity of rumen archaeal populations from bovine rumen fluid incubated with or without condensed tannins was investigated using 16S rRNA gene libraries. The predominant order of rumen archaea in the 16S rRNA gene libraries of the control and condensed tannins treatment was found to belong to a novel group of rumen archaea that is distantly related to the order Thermoplasmatales, with 59.5% (15 phylotypes) and 81.43% (21 phylotypes) of the total clones from the control and treatment clone libraries, respectively. The 16S rRNA gene library of the control was found to have higher proportions of methanogens from the orders Methanomicrobiales (32%) and Methanobacteriales (8.5%) as compared to those found in the condensed tannins treatment clone library in both orders (16.88% and 1.68% respectively). The phylotype distributed in the order Methanosarcinales was only found in the control clone library. The study indicated that condensed tannins could alter the diversity of bovine rumen methanogens.
    Matched MeSH terms: Gene Library*
  16. Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW
    J. Eukaryot. Microbiol., 2013 Jan-Feb;60(1):98-100.
    PMID: 23205499 DOI: 10.1111/jeu.12011
    Molecular diversity of protists from bovine rumen fluid incubated with condensed tannins of Leucaena leucocephala hybrid-Rendang at 20 mg/500 mg dry matter (treatment) or without condensed tannins (control) was investigated using 18S rRNA gene library. Clones from the control library were distributed within nine genera, but clones from the condensed tannin treatment clone library were related to only six genera. Diversity estimators such as abundance-based coverage estimation and Chao1 showed significant differences between the two libraries, although no differences were found based on Shannon-Weaver index and Libshuff.
    Matched MeSH terms: Gene Library
  17. Shah FH, Cha TS
    Plant Sci, 2000 May 29;154(2):153-160.
    PMID: 10729614
    The differential display method was used to isolate cDNAs corresponding to transcripts that accumulate during the period of lipid synthesis, 12-20 weeks after anthesis (WAA) in the mesocarp of two oil palms, Elaeis oleifera and Elaeis guineensis, Tenera. DNA-free total RNA from mesocarp and kernel of E. guineensis, Tenera and E. oleifera (15 WAA) were used to obtain differential gene expression patterns between these tissues from the two species. In this report, we describe the isolation and characterization of a specific cDNA clone, MO1 (434 bp) which was shown to be mesocarp-specific as well as species-specific for E. oleifera Sequencing of this fragment showed homology to the enzyme sesquiterpene synthase. Its longer cDNA clone, pMO1 (1072 bp), isolated from a 15-week E. oleifera mesocarp cDNA library confirmed that it encodes for sesquiterpene synthase. The complete sequence of 1976 bp was obtained using 5'RACE method. Northern hybridization showed that MO1 and pMO1 mRNA transcripts are highly expressed only in the mesocarp of E. oleifera from 5 to 20 WAA. No expression was detected in the kernel (12-17 WAA) and vegetative tissues of both species nor in the mesocarp of E. guineensis. This is the first communication to document on the isolation and characterisation of a mesocarp-and species-specific cDNA clone from oil palm.
    Matched MeSH terms: Gene Library
  18. Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, et al.
    BMC Genomics, 2019 07 16;20(1):586.
    PMID: 31311515 DOI: 10.1186/s12864-019-5954-0
    BACKGROUND: Persicaria minor (kesum) is an herbaceous plant with a high level of secondary metabolite compounds, particularly terpenoids. These terpenoid compounds have well-established roles in the pharmaceutical and food industries. Although the terpenoids of P. minor have been studied thoroughly, the involvement of microRNA (miRNA) in terpenoid regulation remains poorly understood and needs to be explored. In this study, P. minor plants were inoculated with the pathogenic fungus Fusarium oxysporum for terpenoid induction.

    RESULT: SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and β-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation.
    Among these 58 differentially expressed genes (DEGs), 27 [corrected] miRNAs were upregulated, whereas 31 [corrected] miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis.

    CONCLUSION: Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor.

    Matched MeSH terms: Gene Library
  19. Samad AFA, Sajad M, Jani J, Murad AMA, Ismail I
    Data Brief, 2018 Oct;20:555-557.
    PMID: 30197911 DOI: 10.1016/j.dib.2018.08.034
    Degradome sequencing referred as parallel analysis of RNA ends (PARE) by modifying 5'-rapid amplification of cDNA ends (RACE) with deep sequencing method. Deep sequencing of 5' products allow the determination of cleavage sites through the mapping of degradome fragments against small RNAs (miRNA or siRNA) on a large scale. Here, we carried out degradome sequencing in medicinal plant, Persicaria minor, to identify cleavage sites in small RNA libraries in control (mock-inoculated) and Fusarium oxysporum treated plants. The degradome library consisted of both control and treated samples which were pooled together during library preparation and named as D4. The D4 dataset have been deposited at GenBank under accession number SRX3921398, https://www.ncbi.nlm.nih.gov/sra/SRX3921398.
    Matched MeSH terms: Gene Library
  20. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Gene Library
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links