Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Yahya MFZR, Alias Z, Karsani SA
    Protein J, 2017 08;36(4):286-298.
    PMID: 28470375 DOI: 10.1007/s10930-017-9719-9
    Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
    Matched MeSH terms: Gene Ontology
  2. Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, et al.
    Malays J Med Sci, 2020 Dec;27(6):53-67.
    PMID: 33447134 DOI: 10.21315/mjms2020.27.6.6
    Background: Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS.

    Methods: Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package 'affy' was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations.

    Results: GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented.

    Conclusion: The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.

    Matched MeSH terms: Gene Ontology
  3. Farhanah MI, Yasmin AR, Mat Isa N, Hair-Bejo M, Ideris A, Powers C, et al.
    J Gen Virol, 2018 Jan;99(1):21-35.
    PMID: 29058656 DOI: 10.1099/jgv.0.000956
    Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.
    Matched MeSH terms: Gene Ontology
  4. Ng YL, Olivos-García A, Lim TK, Noordin R, Lin Q, Othman N
    Am J Trop Med Hyg, 2018 12;99(6):1518-1529.
    PMID: 30298805 DOI: 10.4269/ajtmh.18-0415
    Entamoeba histolytica is a protozoan parasite that causes amebiasis and poses a significant health risk for populations in endemic areas. The molecular mechanisms involved in the pathogenesis and regulation of the parasite are not well characterized. We aimed to identify and quantify the differentially abundant membrane proteins by comparing the membrane proteins of virulent and avirulent variants of E. histolytica HM-1:IMSS, and to investigate the potential associations among the differentially abundant membrane proteins. We performed quantitative proteomics analysis using isobaric tags for relative and absolute quantitation labeling, in combination with two mass spectrometry instruments, that is, nano-liquid chromatography (nanoLC)-matrix-assisted laser desorption/ionization-mass spectrometry/mass spectrometry and nanoLC-electrospray ionization tandem mass spectrometry. Overall, 37 membrane proteins were found to be differentially abundant, whereby 19 and 18 membrane proteins of the virulent variant of E. histolytica increased and decreased in abundance, respectively. Proteins that were differentially abundant include Rho family GTPase, calreticulin, a 70-kDa heat shock protein, and hypothetical proteins. Analysis by Protein ANalysis THrough Evolutionary Relationships database revealed that the differentially abundant membrane proteins were mainly involved in catalytic activities (29.7%) and metabolic processes (32.4%). Differentially abundant membrane proteins that were found to be involved mainly in the catalytic activities and the metabolic processes were highlighted together with their putative roles in relation to the virulence. Further investigations should be performed to elucidate the roles of these proteins in E. histolytica pathogenesis.
    Matched MeSH terms: Gene Ontology
  5. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
    Matched MeSH terms: Gene Ontology
  6. Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Sci Rep, 2020 09 30;10(1):16123.
    PMID: 32999341 DOI: 10.1038/s41598-020-72997-2
    Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
    Matched MeSH terms: Gene Ontology
  7. Mohamed Yusoff A, Tan TK, Hari R, Koepfli KP, Wee WY, Antunes A, et al.
    Sci Rep, 2016 09 13;6:28199.
    PMID: 27618997 DOI: 10.1038/srep28199
    Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins.
    Matched MeSH terms: Gene Ontology
  8. Mohd-Elias NA, Rosli K, Alias H, Juhari MA, Abu-Bakar MF, Md-Isa N, et al.
    Sci Rep, 2021 Dec 08;11(1):23661.
    PMID: 34880337 DOI: 10.1038/s41598-021-03028-x
    Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.
    Matched MeSH terms: Gene Ontology
  9. Mokhtar SS, Marshall CR, Phipps ME, Thiruvahindrapuram B, Lionel AC, Scherer SW, et al.
    PLoS One, 2014;9(6):e100371.
    PMID: 24956385 DOI: 10.1371/journal.pone.0100371
    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
    Matched MeSH terms: Gene Ontology
  10. Low ET, Rosli R, Jayanthi N, Mohd-Amin AH, Azizi N, Chan KL, et al.
    PLoS One, 2014;9(1):e86728.
    PMID: 24497974 DOI: 10.1371/journal.pone.0086728
    Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm.
    Matched MeSH terms: Gene Ontology
  11. Mohd-Shamsudin MI, Kang Y, Lili Z, Tan TT, Kwong QB, Liu H, et al.
    PLoS One, 2013;8(5):e60839.
    PMID: 23734171 DOI: 10.1371/journal.pone.0060839
    Gene discovery in the Malaysian giant freshwater prawn (Macrobrachium rosenbergii) has been limited to small scale data collection, despite great interest in various research fields related to the commercial significance of this species. Next generation sequencing technologies that have been developed recently and enabled whole transcriptome sequencing (RNA-seq), have allowed generation of large scale functional genomics data sets in a shorter time than was previously possible. Using this technology, transcriptome sequencing of three tissue types: hepatopancreas, gill and muscle, has been undertaken to generate functional genomics data for M. rosenbergii at a massive scale. De novo assembly of 75-bp paired end Ilumina reads has generated 102,230 unigenes. Sequence homology search and in silico prediction have identified known and novel protein coding candidate genes (∼24%), non-coding RNA, and repetitive elements in the transcriptome. Potential markers consisting of simple sequence repeats associated with known protein coding genes have been successfully identified. Using KEGG pathway enrichment, differentially expressed genes in different tissues were systematically represented. The functions of gill and hepatopancreas in the context of neuroactive regulation, metabolism, reproduction, environmental stress and disease responses are described and support relevant experimental studies conducted previously in M. rosenbergii and other crustaceans. This large scale gene discovery represents the most extensive transcriptome data for freshwater prawn. Comparison with model organisms has paved the path to address the possible conserved biological entities shared between vertebrates and crustaceans. The functional genomics resources generated from this study provide the basis for constructing hypotheses for future molecular research in the freshwater shrimp.
    Matched MeSH terms: Gene Ontology
  12. Bonthala VS, Mayes K, Moreton J, Blythe M, Wright V, May ST, et al.
    PLoS One, 2016;11(2):e0148771.
    PMID: 26859686 DOI: 10.1371/journal.pone.0148771
    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.
    Matched MeSH terms: Gene Ontology
  13. Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA
    PLoS One, 2015;10(5):e0127526.
    PMID: 25993649 DOI: 10.1371/journal.pone.0127526
    Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
    Matched MeSH terms: Gene Ontology
  14. Rosli R, Amiruddin N, Ab Halim MA, Chan PL, Chan KL, Azizi N, et al.
    PLoS One, 2018;13(4):e0194792.
    PMID: 29672525 DOI: 10.1371/journal.pone.0194792
    Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.
    Matched MeSH terms: Gene Ontology
  15. Waiho K, Fazhan H, Shahreza MS, Moh JH, Noorbaiduri S, Wong LL, et al.
    PLoS One, 2017;12(1):e0171095.
    PMID: 28135340 DOI: 10.1371/journal.pone.0171095
    Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15-23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression-up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species' genome structure and biology, as expressed and controlled by their gonads.
    Matched MeSH terms: Gene Ontology
  16. Boon-Peng H, Mat Jusoh JA, Marshall CR, Majid F, Danuri N, Basir F, et al.
    PLoS One, 2016;11(3):e0148755.
    PMID: 26930585 DOI: 10.1371/journal.pone.0148755
    Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs) contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV) were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the "foetal cardiac gene programme" which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability.
    Matched MeSH terms: Gene Ontology
  17. Kumar IS, Nadarajah K
    Plants (Basel), 2020 Nov 05;9(11).
    PMID: 33167299 DOI: 10.3390/plants9111491
    Rice blast, sheath blight and bacterial leaf blight are major rice diseases found worldwide. The development of resistant cultivars is generally perceived as the most effective way to combat these diseases. Plant disease resistance is a polygenic trait where a combinatorial effect of major and minor genes affects this trait. To locate the source of this trait, various quantitative trait loci (QTL) mapping studies have been performed in the past two decades. However, investigating the congruency between the reported QTL is a daunting task due to the heterogeneity amongst the QTLs studied. Hence, the aim of our study is to integrate the reported QTLs for resistance against rice blast, sheath blight and bacterial leaf blight and objectively analyze and consolidate the location of QTL clusters in the chromosomes, reducing the QTL intervals and thus identifying candidate genes within the selected meta-QTL. A total of twenty-seven studies for resistance QTLs to rice blast (8), sheath blight (15) and bacterial leaf blight (4) was compiled for QTL projection and analyses. Cumulatively, 333 QTLs associated with rice blast (114), sheath blight (151) and bacterial leaf blight (68) resistance were compiled, where 303 QTLs could be projected onto a consensus map saturated with 7633 loci. Meta-QTL analysis on 294 QTLs yielded 48 meta-QTLs, where QTLs with membership probability lower than 60% were excluded, reducing the number of QTLs within the meta-QTL to 274. Further, three meta-QTL regions (MQTL2.5, MQTL8.1 and MQTL9.1) were selected for functional analysis on the basis that MQTL2.5 harbors the highest number of QTLs; meanwhile, MQTL8.1 and MQTL9.1 have QTLs associated with all three diseases mentioned above. The functional analysis allows for determination of enriched gene ontology and resistance gene analogs (RGAs) and other defense-related genes. To summarize, MQTL2.5, MQTL8.1 and MQTL9.1 have a considerable number of R-genes that account for 10.21%, 4.08% and 6.42% of the total genes found in these meta-QTLs, respectively. Defense genes constitute around 3.70%, 8.16% and 6.42% of the total number of genes in MQTL2.5, MQTL8.1 and MQTL9.1, respectively. This frequency is higher than the total frequency of defense genes in the rice genome, which is 0.0096% (167 defense genes/17,272 total genes). The integration of the QTLs facilitates the identification of QTL hotspots for rice blast, sheath blight and bacterial blight resistance with reduced intervals, which helps to reduce linkage drag in breeding. The candidate genes within the promising regions could be utilized for improvement through genetical engineering.
    Matched MeSH terms: Gene Ontology
  18. Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, et al.
    Physiol Genomics, 2018 05 01;50(5):393-405.
    PMID: 29570432 DOI: 10.1152/physiolgenomics.00016.2018
    The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
    Matched MeSH terms: Gene Ontology
  19. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, et al.
    PeerJ, 2016;4:e1536.
    PMID: 26788424 DOI: 10.7717/peerj.1536
    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor's age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
    Matched MeSH terms: Gene Ontology
  20. Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA
    PeerJ, 2019;7:e8065.
    PMID: 31879570 DOI: 10.7717/peerj.8065
    Background: G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels.

    Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.

    Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.

    Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.

    Matched MeSH terms: Gene Ontology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links