Displaying publications 1 - 20 of 141 in total

Abstract:
Sort:
  1. Zuo XY, Feng QS, Sun J, Wei PP, Chin YM, Guo YM, et al.
    Biol Sex Differ, 2019 03 25;10(1):13.
    PMID: 30909962 DOI: 10.1186/s13293-019-0227-9
    BACKGROUND: The male predominance in the incidence of nasopharyngeal carcinoma (NPC) suggests the contribution of the X chromosome to the susceptibility of NPC. However, no X-linked susceptibility loci have been examined by genome-wide association studies (GWASs) for NPC by far.

    METHODS: To understand the contribution of the X chromosome in NPC susceptibility, we conducted an X chromosome-wide association analysis on 1615 NPC patients and 1025 healthy controls of Guangdong Chinese, followed by two validation analyses in Taiwan Chinese (n = 562) and Malaysian Chinese (n = 716).

    RESULTS: Firstly, the proportion of variance of X-linked loci over phenotypic variance was estimated in the discovery samples, which revealed that the phenotypic variance explained by X chromosome polymorphisms was estimated to be 12.63% (non-dosage compensation model) in males, as compared with 0.0001% in females. This suggested that the contribution of X chromosome to the genetic variance of NPC should not be neglected. Secondly, association analysis revealed that rs5927056 in DMD gene achieved X chromosome-wide association significance in the discovery sample (OR = 0.81, 95% CI 0.73-0.89, P = 1.49 × 10-5). Combined analysis revealed rs5927056 for DMD gene with suggestive significance (P = 9.44 × 10-5). Moreover, the female-specific association of rs5933886 in ARHGAP6 gene (OR = 0.62, 95%CI: 0.47-0.81, P = 4.37 × 10-4) was successfully replicated in Taiwan Chinese (P = 1.64 × 10-2). rs5933886 also showed nominally significant gender × SNP interaction in both Guangdong (P = 6.25 × 10-4) and Taiwan datasets (P = 2.99 × 10-2).

    CONCLUSION: Our finding reveals new susceptibility loci at the X chromosome conferring risk of NPC and supports the value of including the X chromosome in large-scale association studies.

    Matched MeSH terms: Genetic Association Studies
  2. McInerney-Leo AM, Harris JE, Leo PJ, Marshall MS, Gardiner B, Kinning E, et al.
    Clin Genet, 2015 Dec;88(6):550-7.
    PMID: 25492405 DOI: 10.1111/cge.12550
    Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were
    Matched MeSH terms: Genetic Association Studies
  3. Rao ES, Kadirvel P, Symonds RC, Geethanjali S, Thontadarya RN, Ebert AW
    PLoS One, 2015;10(7):e0132535.
    PMID: 26161546 DOI: 10.1371/journal.pone.0132535
    Association analysis was conducted in a core collection of 94 genotypes of Solanum pimpinellifolium to identify variations linked to salt tolerance traits (physiological and yield traits under salt stress) in four candidate genes viz., DREB1A, VP1.1, NHX1, and TIP. The candidate gene analysis covered a concatenated length of 4594 bp per individual and identified five SNP/Indels in DREB1A and VP1.1 genes explaining 17.0% to 25.8% phenotypic variation for various salt tolerance traits. Out of these five alleles, one at 297 bp in DREB1A had in-frame deletion of 6 bp (CTGCAT) or 12 bp (CTGCATCTGCAT), resulting in two alleles, viz., SpDREB1A_297_6 and SpDREB1A_297_12. These alleles individually or as haplotypes accounted for maximum phenotypic variance of about 25% for various salt tolerance traits. Design of markers for selection of the favorable alleles/haplotypes will hasten marker-assisted introgression of salt tolerance from S. pimpinellifolium into cultivated tomato.
    Matched MeSH terms: Genetic Association Studies
  4. Earp M, Tyrer JP, Winham SJ, Lin HY, Chornokur G, Dennis J, et al.
    PLoS One, 2018;13(7):e0197561.
    PMID: 29979793 DOI: 10.1371/journal.pone.0197561
    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.
    Matched MeSH terms: Genetic Association Studies
  5. Mohamad NA, Ramachandran V, Ismail P, Mohd Isa H, Chan YM, Ngah NF, et al.
    Genet Test Mol Biomarkers, 2017 Oct;21(10):600-607.
    PMID: 28926292 DOI: 10.1089/gtmb.2017.0079
    AIM: To determine the association of vascular endothelial growth factor (VEGF) polymorphisms with neovascular age-related macular degeneration (nAMD).

    MATERIALS AND METHODS: One hundred thirty-five nAMD patients and 135 controls were recruited to determine the association of the -460 C/T, the -2549 I/D, and the +405 G/C polymorphisms with the VEGF gene. Genotyping was conducted using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach, and association analyses were conducted using chi-square analysis and logistic regression analysis.

    RESULTS: A significant association was observed between nAMD and the VEGF +405 G/C genotypes (p = 0.002) and alleles (odds ratio = 1.36, 95% confidence interval = 1.12-1.62, p = < 0.001) compared with the controls. This association was confirmed by logistic regression analyses, using two different genetic models (additive and dominant) resulting in p-values of p = 0.001 and p 

    Matched MeSH terms: Genetic Association Studies/methods
  6. Qyi YZ, Aung HH, Aye SN, Tung WS, Naing C
    BMC Cancer, 2023 Oct 24;23(1):1027.
    PMID: 37875868 DOI: 10.1186/s12885-023-11509-7
    BACKGROUND: Gastric cancer has a complex aetiology including genetic factors. Individual case-control studies of toll like receptor (TLR) 9 (-1237 T/C, -1486 T/C) polymorphisms in the gastric cancer risk were available, and they showed variation in the findings. Therefore, we performed a meta-analysis to synthesize the evidence on the association between polymorphisms of TLR 9 (-1237 T/C, -1486 T/C) and the risk of gastric cancer using data from eligible studies.

    METHODS: This study followed the PRISMA 2020 Checklist. Studies were searched in health-related databases. The methodological quality of studies was evaluated with the use of Newcastle-Ottawa Scale criteria. The summary odds ratio (OR) and its 95% confidence interval (CI) were used to determine the strength of association between each polymorphism and the risk of gastric cancer using five genetic models. Stratification was done by ethnic groups. For the robustness of the analysis, a leave-one-out meta-analysis was performed.

    RESULTS: Eight case-control studies with 3,644 participants (1914 cases, 1730 controls) were conducted across six countries. Half of the studies were conducted in China. In the NOS methodological quality assessment, only three studies received a high-quality rating (i.e., a score of ≥ 7). TLR 9 (-1486 T/C) polymorphism and the risk of gastric cancer were assessed in six studies, four of Asian ethnicity and two of non-Asian. Under the dominant model, only in the Asian ethnic group showed a marginally and significantly increased risk of gastric cancer (overall: OR = 1.22, 95%CI = 0.90-1.67, I2 = 56%; Asian: OR = 1.24, 95%CI = 1.00-1.54, I2 = 0%, non-Asian: OR = 1.25, 95%CI = 0.38-4.09, I2 = 89%). Under the recessive model in the absence of heterogeneity, only the Asian group had a significantly higher risk of developing gastric cancer (overall: OR = 1.4, 95% CI = 0.74-2.64, I2 = 85%; Asian: OR: 1.41, 95% CI = 1.07-1.86, I2 = 0%, non-Asian: OR = 1.18, 95% CI = 0.12-11.76, I2 = 97%). Under the heterozygous model, there was no significant association with the risk of gastric cancer overall or among any ethnic subgroup. Under the homozygous model in the absence of heterogeneity, only the Asian group had a significantly higher risk of gastric cancer (overall, OR = 1.47, 95% CI = 0.76-2.86, I2 = 82%; Asian: OR = 1.54, 95% CI = 1.13-2.1, I2 = 0%; non-Asian: OR = 1.19, 95% CI = 0.1-14.33, I2 = 96%). Under the allele model, a significantly increased risk of gastric cancer was observed only in the Asian group (overall: OR = 1.23, 95% CI = 0.89-1.71, I2 = 84%; Asian: OR = 1.22, 95% CI = 1.05-1.41, I2 = 0%; non-Asian: OR = 1.24, 95% CI = 0.34-4.59, I2 = 97%). Four studies investigated the association between TLR 9 (-1237 T/C) polymorphism and the risk of developing gastric cancer. Under any of the five genetic models, there was no association between TLR 9 (-1237 T/C) and the development of gastric cancer in overall or in any ethnic subgroup. Sensitivity analysis revealed that the effect was unstable. With a small number of studies with a small number of participants, we addressed the issue of insufficient power for drawing conclusions.

    CONCLUSIONS: The findings suggested that TLR9 (-1486 T/C) may play a role in the risk of gastric cancer specific to the Asian ethnic group. To substantiate the findings on the association between these two polymorphisms (TLR9 -1237 T/C, -1486 T/C) and the risk of gastric cancer, future well-designed case-control studies with a sufficient number of participants in multi-ethnic groups are recommended.

    Matched MeSH terms: Genetic Association Studies
  7. Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al.
    Transl Psychiatry, 2019 08 27;9(1):205.
    PMID: 31455759 DOI: 10.1038/s41398-019-0532-4
    Over 3000 candidate gene association studies have been performed to elucidate the genetic underpinnings of schizophrenia. However, a comprehensive evaluation of these studies' findings has not been undertaken since the decommissioning of the schizophrenia gene (SzGene) database in 2011. As such, we systematically identified and carried out random-effects meta-analyses for all polymorphisms with four or more independent studies in schizophrenia along with a series of expanded meta-analyses incorporating published and unpublished genome-wide association (GWA) study data. Based on 550 meta-analyses, 11 SNPs in eight linkage disequilibrium (LD) independent loci showed Bonferroni-significant associations with schizophrenia. Expanded meta-analyses identified an additional 10 SNPs, for a total of 21 Bonferroni-significant SNPs in 14 LD-independent loci. Three of these loci (MTHFR, DAOA, ARVCF) had never been implicated by a schizophrenia GWA study. In sum, the present study has provided a comprehensive summary of the current schizophrenia genetics knowledgebase and has made available all the collected data as a resource for the research community.
    Matched MeSH terms: Genetic Association Studies
  8. Tan SC, Low TY, Mohamad Hanif EA, Sharzehan MAK, Kord-Varkaneh H, Islam MA
    Sci Rep, 2021 Sep 20;11(1):18619.
    PMID: 34545128 DOI: 10.1038/s41598-021-97935-8
    The ESR1 rs9340799 polymorphism has been frequently investigated with regard to its association with breast cancer (BC) susceptibility, but the findings have been inconclusive. In this work, we aimed to address the inconsistencies in study findings by performing a systematic review and meta-analysis. Eligible studies were identified from the Web of Science, PubMed, Scopus, China National Knowledge Infrastructure, VIP and Wanfang databases based on the predefined inclusion and exclusion criteria. The pooled odds ratio (OR) was then calculated under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). Combined results from 23 studies involving 34,721 subjects indicated a lack of significant association between the polymorphism and BC susceptibility (homozygous model, OR = 1.045, 95% CI 0.887-1.231, P = 0.601; heterozygous model, OR = 0.941, 95% CI 0.861-1.030, P = 0.186; dominant model, OR = 0.957, 95% CI 0.875-1.045, P = 0.327; recessive model, OR = 1.053, 95% CI 0.908-1.222, P = 0.495; allele model, OR = 0.987, 95% CI 0.919-1.059, P = 0.709). Subgroup analyses by ethnicity, menopausal status and study quality also revealed no statistically significant association (P > 0.05). In conclusion, our results showed that the ESR1 rs9340799 polymorphism was not associated with BC susceptibility, suggesting its limited potential as a genetic marker for BC.
    Matched MeSH terms: Genetic Association Studies
  9. Abdullah, S.
    MyJurnal
    Cystic Fibrosis (CF) is a life-threatening inherited disease that particularly affects the airways and digestive systems, which is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. CF is considered as the most common autosomal recessive disorder in the Caucasian population. However, the prevalence of this disease amongst Asians is considered to be low, hence the lack of awareness of this disease amongst geneticists and physicians in Malaysia. This review will describe the features of CF, its molecular genetics, the current classification of CFTR mutation classes, the genotype-phenotype correlations, the effects of modifier genes, and the discourse of the disease pathogenesis, in the hope of raising public awareness of the condition and ultimately to improve the clinical and social care of those affected by CF in Malaysia.
    Matched MeSH terms: Genetic Association Studies
  10. Au A, Griffiths LR, Irene L, Kooi CW, Wei LK
    Atherosclerosis, 2017 Oct;265:60-70.
    PMID: 28865324 DOI: 10.1016/j.atherosclerosis.2017.08.003
    BACKGROUND AND AIMS: Genetic studies have been reported on the association between APOA5, APOB, APOC3 and ABCA1 gene polymorphisms and ischemic stroke, but results remain controversial. Hence, this meta-analysis aimed to infer the causal relationships of APOA5 (rs662799, rs3135506), APOB (rs693, rs1042031, rs1801701), APOC3 (rs4520, rs5128, rs2854116, rs2854117) and ABCA1 rs2230806 with ischemic stroke risk.

    METHODS: A systematic review was performed for all the articles retrieved from multiple databases, up until March 2017. Data were extracted from all eligible studies, and meta-analysis was carried out using RevMan 5.3 and R package 3.2.1. The strength of association between each studied polymorphism and ischemic stroke risk was measured as odds ratios (ORs) and 95% confidence intervals (CIs), under fixed- and random-effect models.

    RESULTS: A total of 79 studies reporting on the association between the studied polymorphisms and ischemic stroke risk were identified. The pooled data indicated that all genetic models of APOA5 rs662799 (ORs = 1.23-1.43), allelic and over-dominant models of APOA5 rs3135506 (ORs = 1.77-1.97), APOB rs1801701 (ORs = 1.72-2.13) and APOB rs1042031 (ORs = 1.66-1.88) as well as dominant model of ABCA1 rs2230806 (OR = 1.31) were significantly associated with higher risk of ischemic stroke. However, no significant associations were observed between ischemic stroke and the other five polymorphisms, namely ApoB (rs693) and APOC3 (rs4520, rs5128, rs2854116 and rs2854117), under any genetic model.

    CONCLUSIONS: The present meta-analysis confirmed a significant association of APOA5 rs662799 CC, APOA5 rs3135506 CG, APOB rs1801701 GA, APOB rs1042031 GA and ABCA1 rs2230806 GG with increased risk of ischemic stroke.

    Matched MeSH terms: Genetic Association Studies
  11. Dalan R, Liew H, Goh LL, Gao X, Chew DE, Boehm BO, et al.
    Diab Vasc Dis Res, 2016 09;13(5):373-6.
    PMID: 27190085 DOI: 10.1177/1479164116645247
    The haptoglobin 2-2 genotype is associated with atherosclerosis in type 2 diabetes mellitus. We examined the associations of the haptoglobin 2-2 genotype with C-reactive protein (high-sensitivity C-reactive protein) and carotid artery intima-media thickness, adjusting for age, gender, ethnicity, type 2 diabetes mellitus, smoking status, body mass index, blood pressure, glycated haemoglobin, non-high-density lipoprotein cholesterol and medications via logistic multivariate regression in 200 subjects (160 type 2 diabetes mellitus versus 40 healthy individuals). The prevalence of the haptoglobin 2-2 genotype was 58% (115/200), higher in the Indians than in Chinese (72% versus 45%, p = 0.001). Multivariate analysis showed that the haptoglobin 2-2 genotype was associated with high-sensitivity C-reactive protein [mean: 3.5 ± 3.9 versus 2.2 ± 2.6 mg/L (non-haptoglobin 2-2), p 
    Matched MeSH terms: Genetic Association Studies
  12. Paquette AM, Harahap A, Laosombat V, Patnode JM, Satyagraha A, Sudoyo H, et al.
    Infect Genet Evol, 2015 Aug;34:153-9.
    PMID: 26047685 DOI: 10.1016/j.meegid.2015.06.002
    Southeast Asian Ovalocytosis (SAO) is a common red blood cell disorder that is maintained as a balanced polymorphism in human populations. In individuals heterozygous for the SAO-causing mutation there are minimal detrimental effects and well-documented protection from severe malaria caused by Plasmodium vivax and Plasmodium falciparum; however, the SAO-causing mutation is fully lethal in utero when homozygous. The present-day high frequency of SAO in Island Southeast Asia indicates the trait is maintained by strong heterozygote advantage. Our study elucidates the evolutionary origin of SAO by characterizing DNA sequence variation in a 9.5 kilobase region surrounding the causal mutation in the SLC4A1 gene. We find substantial haplotype diversity among SAO chromosomes and estimate the age of the trait to be approximately 10,005 years (95% CI: 4930-23,200 years). This date is far older than any other human malaria-resistance trait examined previously in Southeast Asia, and considerably pre-dates the widespread adoption of agriculture associated with the spread of speakers of Austronesian languages some 4000 years ago. Using a genealogy-based method we find no evidence of historical positive selection acting on SAO (s=0.0, 95% CI: 0.0-0.03), in sharp contrast to the strong present-day selection coefficient (e.g., 0.09) estimated from the frequency of this recessively lethal trait. This discrepancy may be due to a recent increase in malaria-driven selection pressure following the spread of agriculture, with SAO targeted as a standing variant by positive selection in malarial populations.
    Matched MeSH terms: Genetic Association Studies
  13. Rahmadhani R, Zaharan NL, Mohamed Z, Moy FM, Jalaludin MY
    PLoS One, 2017;12(6):e0178695.
    PMID: 28617856 DOI: 10.1371/journal.pone.0178695
    BACKGROUND: The vitamin D receptor (VDR) gene is expressed abundantly in different tissues; including adipocytes and pancreatic beta cells. The rs1544410 or BsmI single nucleotide polymorphism (SNP) in the intronic region of the VDR gene has been previously associated with vitamin D levels, obesity and insulin resistance.

    AIMS: This study was aimed to examine the association between BsmI polymorphism and risk of vitamin D deficiency, obesity and insulin resistance in adolescents living in a tropical country.

    METHODS: Thirteen-year-old adolescents were recruited via multistage sampling from twenty-three randomly selected schools across the city of Kuala Lumpur, Malaysia (n = 941). Anthropometric measurements were obtained. Obesity was defined as body mass index higher than the 95th percentile of the WHO chart. Levels of fasting serum vitamin D (25-hydroxyvitamin D (25(OH)D)), glucose and insulin were measured. HOMA-IR was calculated as an indicator for insulin resistance. Genotyping was performed using the Sequenom MassARRAY platform (n = 807). The associations between BsmI and vitamin D, anthropometric parameters and HOMA-IR were examined using analysis of covariance and logistic regression.

    RESULT: Those with AA genotype of BsmI had significantly lower levels of 25(OH)D (p = 0.001) compared to other genotypes. No significant differences was found across genotypes for obesity parameters. The AA genotype was associated with higher risk of vitamin D deficiency (p = 0.03) and insulin resistance (p = 0.03) compared to GG. The A allele was significantly associated with increased risk of vitamin D deficiency compared to G allele (adjusted odds ratio (OR) = 1.63 (95% Confidence Interval (CI) 1.03-2.59, p = 0.04). In those with concurrent vitamin D deficiency, having an A allele significantly increased their risk of having insulin resistance compared to G allele (adjusted OR = 2.66 (95% CI 1.36-5.19, p = 0.004).

    CONCLUSION: VDR BsmI polymorphism was significantly associated with vitamin D deficiency and insulin resistance, but not with obesity in this population.

    Matched MeSH terms: Genetic Association Studies
  14. Peyrot WJ, Lee SH, Milaneschi Y, Abdellaoui A, Byrne EM, Esko T, et al.
    Mol Psychiatry, 2015 Jun;20(6):735-43.
    PMID: 25917368 DOI: 10.1038/mp.2015.50
    An association between lower educational attainment (EA) and an increased risk for depression has been confirmed in various western countries. This study examines whether pleiotropic genetic effects contribute to this association. Therefore, data were analyzed from a total of 9662 major depressive disorder (MDD) cases and 14,949 controls (with no lifetime MDD diagnosis) from the Psychiatric Genomics Consortium with additional Dutch and Estonian data. The association of EA and MDD was assessed with logistic regression in 15,138 individuals indicating a significantly negative association in our sample with an odds ratio for MDD 0.78 (0.75-0.82) per standard deviation increase in EA. With data of 884,105 autosomal common single-nucleotide polymorphisms (SNPs), three methods were applied to test for pleiotropy between MDD and EA: (i) genetic profile risk scores (GPRS) derived from training data for EA (independent meta-analysis on ~120,000 subjects) and MDD (using a 10-fold leave-one-out procedure in the current sample), (ii) bivariate genomic-relationship-matrix restricted maximum likelihood (GREML) and (iii) SNP effect concordance analysis (SECA). With these methods, we found (i) that the EA-GPRS did not predict MDD status, and MDD-GPRS did not predict EA, (ii) a weak negative genetic correlation with bivariate GREML analyses, but this correlation was not consistently significant, (iii) no evidence for concordance of MDD and EA SNP effects with SECA analysis. To conclude, our study confirms an association of lower EA and MDD risk, but this association was not because of measurable pleiotropic genetic effects, which suggests that environmental factors could be involved, for example, socioeconomic status.
    Matched MeSH terms: Genetic Association Studies
  15. Au A, Griffiths LR, Cheng KK, Wee Kooi C, Irene L, Keat Wei L
    Sci Rep, 2015 Dec 15;5:18224.
    PMID: 26666837 DOI: 10.1038/srep18224
    Both OLR1 and PCSK9 genes are associated with atherosclerosis, cardiovascular disease and ischemic stroke. The overall prevalence of PCSK9 rs505151 and OLR1 rs11053646 variants in ischemic stroke were 0.005 and 0.116, respectively. However, to date, association between these polymorphisms and ischemic stroke remains inconclusive. Therefore, this first meta-analysis was carried out to clarify the presumed influence of these polymorphisms on ischemic stroke. All eligible case-control and cohort studies that met the search terms were retrieved in multiple databases. Demographic and genotyping data were extracted from each study, and the meta-analysis was performed using RevMan 5.3 and Metafor R 3.2.1. The pooled odd ratios (ORs) and 95% confidence intervals (CIs) were calculated using both fixed- and random-effect models. Seven case-control studies encompassing 1897 cases and 2119 controls were critically evaluated. Pooled results from the genetic models indicated that OLR1 rs11053646 dominant (OR = 1.33, 95%  CI:1.11-1.58) and co-dominant models (OR = 1.24, 95%  CI:1.02-1.51) were significantly associated with ischemic stroke. For the PCSK9 rs505151 polymorphism, the OR of co-dominant model (OR = 1.36, 95%  CI:1.01-1.58) was found to be higher among ischemic stroke patients. In conclusion, the current meta-analysis highlighted that variant allele of OLR1 rs11053646 G > C and PCSK9 rs505151 A > G may contribute to the susceptibility risk of ischemic stroke.
    Matched MeSH terms: Genetic Association Studies*
  16. Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, et al.
    J Clin Endocrinol Metab, 2017 11 01;102(11):4124-4135.
    PMID: 28938457 DOI: 10.1210/jc.2017-00957
    Context: Hypertension in young women is uncommon compared with young men and older women. Estrogen appears to protect most women against hypertension, with incidence increasing after menopause. Because some premenopausal women develop hypertension, estrogen may play a different role in these women. Genetic variations in the estrogen receptor (ER) are associated with cardiovascular disease. ER-β, encoded by ESR2, is the ER predominantly expressed in vascular smooth muscle.

    Objective: To determine an association of single nucleotide polymorphisms in ESR2 with salt sensitivity of blood pressure (SSBP) and estrogen status in women.

    Methods: Candidate gene association study with ESR2 and SSBP conducted in normotensive and hypertensive women and men in two cohorts: International Hypertensive Pathotype (HyperPATH) (n = 584) (discovery) and Mexican American Hypertension-Insulin Resistance Study (n = 662) (validation). Single nucleotide polymorphisms in ESR1 (ER-α) were also analyzed. Analysis conducted in younger (<51 years, premenopausal, "estrogen-replete") and older women (≥51 years, postmenopausal, "estrogen-deplete"). Men were analyzed to control for aging.

    Results: Multivariate analyses of HyperPATH data between variants of ESR2 and SSBP documented that ESR2 rs10144225 minor (risk) allele carriers had a significantly positive association with SSBP driven by estrogen-replete women (β = +4.4 mm Hg per risk allele, P = 0.004). Findings were confirmed in Hypertension Insulin-Resistance Study premenopausal women. HyperPATH cohort analyses revealed risk allele carriers vs noncarriers had increased aldosterone/renin ratios. No associations were detected with ESR1.

    Conclusions: The variation at rs10144225 in ESR2 was associated with SSBP in premenopausal women (estrogen-replete) and not in men or postmenopausal women (estrogen-deplete). Inappropriate aldosterone levels on a liberal salt diet may mediate the SSBP.

    Matched MeSH terms: Genetic Association Studies
  17. Dhaliwal JS, Wong L, Kamaluddin MA, Yin LY, Murad S
    Hum Immunol, 2011 Oct;72(10):889-92.
    PMID: 21762745 DOI: 10.1016/j.humimm.2011.06.013
    The incidence of aplastic anemia is reported to be higher in Asia than elsewhere. We studied the frequency of human leukocyte antigen (HLA) DRB1 alleles in aplastic anemia patients from 2 genetically similar aboriginal groups, the Kadazan and the Dusun, and compared them with genetically matched community and hospital controls. HLA-DRB1*15 was significantly higher in the patients compared with controls (p = 0.005), confirming similar findings in Japanese and Caucasian studies. Further testing indicated a significantly higher frequency of HLA-DRB1*1501 in patients compared with controls (p = 0.0004) but no significant difference in the frequency of HLA-DRB1*1502. The high frequency of HLA-DRB1*15 in the Kadazan and Dusun population combined with the wide variety of environmental factors associated with aplastic anemia could be the reason for the elevated incidence of aplastic anemia in the Kadazan and Dusun in Sabah.
    Matched MeSH terms: Genetic Association Studies
  18. Radhakrishnan AK, Raj VL, Tan LK, Liam CK
    Biomed Res Int, 2013;2013:981012.
    PMID: 23865080 DOI: 10.1155/2013/981012
    Asthma susceptibility genes are mapped to a region on human chromosome 5q31-q33, which contains a cluster of proinflammatory cytokine genes such as interleukin-13 (IL-13), which is associated with asthma. This study investigated the allele frequencies of two single nucleotide polymorphisms (SNPs) (-1111C>T and 4257C>A) in the IL-13 gene between asthmatics and healthy volunteers as well as the relationship between these SNPs and IL-13 production. DNA extracted from buffy coat of asthmatic and control subjects was genotyped using the PCR-RFLP method. Amount of IL-13 produced by mitogen-stimulated peripheral blood leucocytes PBLs (PBLs) was determined by ELISA. The frequencies of the -1111C and 4257G wild-type alleles were 0.52 and 0.55 in asthmatics and were 0.67 and 0.56 in controls. A significant (P < 0.05) association was found between genotype and allele frequencies of SNP at position -1111C>T between asthmatic and control groups (OR, 1.810; 95% CI = 1.184 to 2.767; P < 0.05). The mitogen-stimulated PBLs from asthmatics produced higher amounts of IL-13 production (P < 0.001). The 4257GA heterozygous and 4257AA homozygous mutant alleles were associated with higher IL-13 production in asthmatics (P < 0.05). Our results show that the -1111T mutant allele are associated with asthma and the 4257A mutant alleles are associated with elevated IL-13 production.
    Matched MeSH terms: Genetic Association Studies*
  19. Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis-Scott M, Rourke ML, et al.
    Mol Ecol, 2017 Nov;26(22):6253-6269.
    PMID: 28977721 DOI: 10.1111/mec.14368
    Adaptive differences across species' ranges can have important implications for population persistence and conservation management decisions. Despite advances in genomic technologies, detecting adaptive variation in natural populations remains challenging. Key challenges in gene-environment association studies involve distinguishing the effects of drift from those of selection and identifying subtle signatures of polygenic adaptation. We used paired-end restriction site-associated DNA sequencing data (6,605 biallelic single nucleotide polymorphisms; SNPs) to examine population structure and test for signatures of adaptation across the geographic range of an iconic Australian endemic freshwater fish species, the Murray cod Maccullochella peelii. Two univariate gene-association methods identified 61 genomic regions associated with climate variation. We also tested for subtle signatures of polygenic adaptation using a multivariate method (redundancy analysis; RDA). The RDA analysis suggested that climate (temperature- and precipitation-related variables) and geography had similar magnitudes of effect in shaping the distribution of SNP genotypes across the sampled range of Murray cod. Although there was poor agreement among the candidate SNPs identified by the univariate methods, the top 5% of SNPs contributing to significant RDA axes included 67% of the SNPs identified by univariate methods. We discuss the potential implications of our findings for the management of Murray cod and other species generally, particularly in relation to informing conservation actions such as translocations to improve evolutionary resilience of natural populations. Our results highlight the value of using a combination of different approaches, including polygenic methods, when testing for signatures of adaptation in landscape genomic studies.
    Matched MeSH terms: Genetic Association Studies
  20. Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, et al.
    BMC Genet, 2020 04 29;21(1):49.
    PMID: 32349678 DOI: 10.1186/s12863-020-00853-3
    BACKGROUND: Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The 'genetically improved farmed tilapia' (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins.

    RESULTS: A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284).

    CONCLUSIONS: Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.

    Matched MeSH terms: Genetic Association Studies/veterinary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links