Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Chong HY, Saokaew S, Dumrongprat K, Permsuwan U, Wu DB, Sritara P, et al.
    Thromb Res, 2014 Dec;134(6):1278-84.
    PMID: 25456732 DOI: 10.1016/j.thromres.2014.10.006
    Pharmacogenetic (PGx) test is a useful tool for guiding physician on an initiation of an optimal warfarin dose. To implement of such strategy, the evidence on the economic value is needed. This study aimed to determine the cost-effectiveness of PGx-guided warfarin dosing compared with usual care (UC).
    Matched MeSH terms: Genetic Markers/genetics
  2. Ishak R, Zakaria Z
    PMID: 9561621
    Hemophilia B is an X-linked recessive disorder of the hemostasis involving a defective clotting factor IX. Amplification of the regions containing restriction fragment length polymorphisms (RFLP) can be achieved by the use of polymerase chain reaction (PCR). This paper describes the analysis of 2 RFLPs involving the Dde1 and Taq1 restriction sites within the factor IX gene in a family with hemophilia B. Digestion of the PCR products with Taq1 revealed a 163bp fragment in all the family members. This finding suggests the absence of restriction site for Taq1 enzyme. However, the Dde1 digest results in bands 369bp and 319bp segregated amongst the family members. The pattern of inheritance of the 369bp fragment in this family suggested that both the patient's mother and aunt are not carriers and that the patient's factor IX gene could have undergone a de novo mutation producing a defective factor IX gene responsible for the hemophilia B. This is supported by the fact that no family history of hemophilia B is indicated in the other male members within the family.
    Matched MeSH terms: Genetic Markers/genetics
  3. Azizah MR, Ainol SS, Kong NCT, Normaznah Y, Rahim MN
    Korean J. Intern. Med., 2001 Jun;16(2):123-31.
    PMID: 11590899 DOI: 10.3904/kjim.2001.16.2.123
    BACKGROUND: Studies have shown that certain genes within the major histocompatibility complex predispose to systemic lupus erythematosus (SLE) and may influence clinical and autoantibody expression. Thus, we studied the frequency of HLA-DR, -DQA, -DQB and -DPB alleles in ethnic Malays with SLE to determine the role of these genes in determining disease susceptibility and their association with clinical and immunological manifestations.
    METHODS: Fifty-six Malay SLE patients were enrolled into the study. Demographic, clinical and immunological findings were obtained from medical records. HLA-DR, DQ and DP typing were done using modified PCR-RELP. Controls were from ethnically-matched healthy individuals.
    RESULTS: We found a strongly significant association of the DR2 and DQB1 *0501 and DQB1*0601 (pcorr = 0.03, rr = 3.83, pcorr = 0.0036, rr = 4.56 and pcorr = 0.0048 and rr = 6.0, respectively). There was also a weak increase of DQB1*0.201 and DPB1*0.0901 with a weak decrease of DQA1*0601 and DQB1*0503 and *0301 which were not significant after corrections for multiple comparisons were made. There was a significant positive association of DR2 and DQB1*0501 with renal involvement and DR8 with alopecia. A nonsignificant increase of DQB1*0503 in patients with photosensitivity was noted. Significant autoantibody associations were also found: DQB1*0601 with anti-Sm/RNP, DR2 with antiSSA (Ro)/SSB (La), and DR2, DQB1*0501 and *0601 with antibodies to ds DNA. There was no specific DR, DQ or DP associations with age of disease onset (below 30 years or those at or above 30 years).
    CONCLUSION: Our data suggests the role of the HLA class II genes in conferring SLE susceptibility and in clinical and autoantibody expression.
    Study site: SLE Clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Genetic Markers/genetics
  4. Khan FA, Phillips CD, Baker RJ
    Syst Biol, 2014 Jan 1;63(1):96-110.
    PMID: 24149076 DOI: 10.1093/sysbio/syt062
    Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary strategies of gleaning insects (N. albiventris) or fish (N. leporinus) are among the most rapid instances of dietary evolution observed in mammals. This study illustrates the complex evolutionary dynamics shaping gene pools in nature, how comparisons of genetic elements can serve for understanding species boundaries, and the complex considerations for accurate taxonomic assignment.
    Matched MeSH terms: Genetic Markers/genetics
  5. Yahya N, Chua XJ, Manan HA, Ismail F
    Strahlenther Onkol, 2018 08;194(8):780-786.
    PMID: 29774397 DOI: 10.1007/s00066-018-1303-5
    PURPOSE: This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies.

    MATERIALS AND METHODS: Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.

    RESULTS: A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.

    CONCLUSION: A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

    Matched MeSH terms: Genetic Markers/genetics
  6. Ngui R, Lim YA, Chua KH
    PLoS One, 2012;7(7):e41996.
    PMID: 22844538 DOI: 10.1371/journal.pone.0041996
    Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species.
    Matched MeSH terms: Genetic Markers/genetics
  7. Hatin WI, Nur-Shafawati AR, Zahri MK, Xu S, Jin L, Tan SG, et al.
    PLoS One, 2011;6(4):e18312.
    PMID: 21483678 DOI: 10.1371/journal.pone.0018312
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.
    Matched MeSH terms: Genetic Markers/genetics
  8. Osman A, Jordan B, Lessard PA, Muhammad N, Haron MR, Riffin NM, et al.
    Plant Physiol, 2003 Mar;131(3):1294-301.
    PMID: 12644679 DOI: 10.1104/pp.012492
    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.
    Matched MeSH terms: Genetic Markers/genetics
  9. Chua TH, Chong YV, Lim SH
    Pest Manag Sci, 2010 Apr;66(4):379-84.
    PMID: 19946858 DOI: 10.1002/ps.1886
    Identification of Bactrocera carambolae Drew and Hancock, B. papayae Drew and Hancock, B. tau Walker, B. latifrons Hendel, B. cucurbitae Coquillett, B. umbrosa Fabricius and B. caudata Fabricius would pose a problem if only a body part or an immature stage were available. Analysis of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of cytochrome oxidase I (COI) gene using primers COIR, COIF, UEA7 and UEA10 and restriction enzymes (MseI, RsaI and Alu1) was carried out. The banding profiles in the electrophoresis gel were analysed.
    Matched MeSH terms: Genetic Markers/genetics
  10. Diez Benavente E, Campos M, Phelan J, Nolder D, Dombrowski JG, Marinho CRF, et al.
    PLoS Genet, 2020 02;16(2):e1008576.
    PMID: 32053607 DOI: 10.1371/journal.pgen.1008576
    Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.
    Matched MeSH terms: Genetic Markers/genetics
  11. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
    Matched MeSH terms: Genetic Markers/genetics*
  12. Lesseur C, Diergaarde B, Olshan AF, Wünsch-Filho V, Ness AR, Liu G, et al.
    Nat Genet, 2016 Dec;48(12):1544-1550.
    PMID: 27749845 DOI: 10.1038/ng.3685
    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10-8), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10-9). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10-6) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    Matched MeSH terms: Genetic Markers/genetics*
  13. Li J, Lindström LS, Foo JN, Rafiq S, Schmidt MK, Pharoah PD, et al.
    Nat Commun, 2014 Jun 17;5:4051.
    PMID: 24937182 DOI: 10.1038/ncomms5051
    Large population-based registry studies have shown that breast cancer prognosis is inherited. Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human immunology and inflammation as candidates for prognostic markers of breast cancer survival involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279 events) from 14 European studies in a prior large-scale genotyping experiment, which is part of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out replication using Asian COGS samples (n=522, 53 events) and the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n=315, 108 events). Rs4458204_A near CCL20 (2q36.3) is found to be associated with breast cancer-specific death at a genome-wide significant level (n=2,641, 440 events, combined allelic hazard ratio (HR)=1.81 (1.49-2.19); P for trend=1.90 × 10(-9)). Such survival-associated variants can represent ideal targets for tailored therapeutics, and may also enhance our current prognostic prediction capabilities.
    Matched MeSH terms: Genetic Markers/genetics*
  14. Syed-Shabthar SM, Rosli MK, Mohd-Zin NA, Romaino SM, Fazly-Ann ZA, Mahani MC, et al.
    Mol Biol Rep, 2013 Aug;40(8):5165-76.
    PMID: 23686165 DOI: 10.1007/s11033-013-2619-y
    Bali cattle is a domestic cattle breed that can be found in Malaysia. It is a domestic cattle that was purely derived from a domestication event in Banteng (Bos javanicus) around 3,500 BC in Indonesia. This research was conducted to portray the phylogenetic relationships of the Bali cattle with other cattle species in Malaysia based on maternal and paternal lineage. We analyzed the cytochrome c oxidase I (COI) mitochondrial gene and SRY of Y chromosome obtained from five species of the Bos genus (B. javanicus, Bos gaurus, Bos indicus, Bos taurus, and Bos grunniens). The water buffalo (Bubalus bubalis) was used as an outgroup. The phylogenetic relationships were observed by employing several algorithms: Neighbor-Joining (PAUP version 4.0), Maximum parsimony (PAUP version 4.0) and Bayesian inference (MrBayes 3.1). Results from the maternal data showed that the Bali cattle formed a monophyletic clade, and together with the B. gaurus clade formed a wild cattle clade. Results were supported by high bootstrap and posterior probability values together with genetic distance data. For the paternal lineage, the sequence variation is low (with parsimony informative characters: 2/660) resulting an unresolved Neighbor-Joining tree. However, Bali cattle and other domestic cattle appear in two monophyletic clades distinct from yak, gaur and selembu. This study expresses the potential of the COI gene in portraying the phylogenetic relationships between several Bos species which is important for conservation efforts especially in decision making since cattle is highly bred and hybrid breeds are often formed. Genetic conservation for this high quality beef cattle breed is important by maintaining its genetic characters to prevent extinction or even decreased the genetic quality.
    Matched MeSH terms: Genetic Markers/genetics*
  15. Adibah AB, Ling LP, Tan SG, Faridah QZ, Christianus A
    Mol Biol Rep, 2012 Apr;39(4):3815-20.
    PMID: 21744263 DOI: 10.1007/s11033-011-1159-6
    Horseshoe crabs are said to be declining worldwide. However, there is still no published report on the status of horseshoe crabs in Malaysia. Thus, we report here eight informative microsatellite markers that were developed using the 5'-anchored ISSR-PCR enrichment procedure to diagnose the population genetic structure of the mangrove horseshoe crab, Carcinoscorpius rotundicauda from Peninsular Malaysia. This set of markers was tested on 127 samples and showed polymorphism in this species. Hence they should be useful in future essential population genetic studies of these living fossils in the Southeast Asian region.
    Matched MeSH terms: Genetic Markers/genetics
  16. Underwood AP, Bianco AE
    Mol Biochem Parasitol, 1999 Mar 15;99(1):1-10.
    PMID: 10215019
    Random amplification of polymorphic DNA (RAPD) was used to analyse genomic DNA from virgin females and males of Brugia malayi, with a view to identifying sex-specific differences predicted by an XX/XY system of chromosomal sex determination. A product of 2338 bp, amplified with the arbitrary primer 5' GTTGCGATCC 3', was obtained exclusively from males. Primers based on the sequence of this product amplified a DNA fragment of the expected size from each of two independent isolates of B. malayi (from Malaysia and Indonesia) by PCR. No reaction product was obtained from the closely related species Brugia pahangi. In a genetic cross between B. malayi males and B. pahangi females, F1 hybrid microfilariae were PCR-positive, indicating that the locus is paternally-inherited. Southern blotting demonstrated that the target sequence resides in the high molecular weight fraction of genomic DNA, confirming that it is of chromosomal, rather than mitochondrial, origin. Sequencing of the locus revealed significant similarity with members of a family of reverse transcriptase-like genes in Caenorhabditis elegans. In-frame stops indicate that the gene is non-functional, but multiple bands of hybridisation in Southern blots suggest that the RT sequence may be the relic of a transposable element. Multiple repeats of the dinucleotide AT occurred in another region of the sequence. These varied in number between the two isolates of B. malayi in the manner of a microsatellite, surprisingly the first to be described from the B. malayi genome. Because of its association with the Y chromosome, we have given the locus the acronym TOY (Tag On Y). Identification of this chromosome-specific marker confirms the XX/XY heterogametic karyotype in B. malayi and opens the way to elucidation of the role of Y in sex determination.
    Matched MeSH terms: Genetic Markers/genetics*
  17. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Genetic Markers/genetics
  18. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

    Matched MeSH terms: Genetic Markers/genetics
  19. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Genetic Markers/genetics
  20. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: Genetic Markers/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links