Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Khan FA, Phillips CD, Baker RJ
    Syst Biol, 2014 Jan 1;63(1):96-110.
    PMID: 24149076 DOI: 10.1093/sysbio/syt062
    Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary strategies of gleaning insects (N. albiventris) or fish (N. leporinus) are among the most rapid instances of dietary evolution observed in mammals. This study illustrates the complex evolutionary dynamics shaping gene pools in nature, how comparisons of genetic elements can serve for understanding species boundaries, and the complex considerations for accurate taxonomic assignment.
    Matched MeSH terms: Genetic Markers/genetics
  2. Syed-Shabthar SM, Rosli MK, Mohd-Zin NA, Romaino SM, Fazly-Ann ZA, Mahani MC, et al.
    Mol Biol Rep, 2013 Aug;40(8):5165-76.
    PMID: 23686165 DOI: 10.1007/s11033-013-2619-y
    Bali cattle is a domestic cattle breed that can be found in Malaysia. It is a domestic cattle that was purely derived from a domestication event in Banteng (Bos javanicus) around 3,500 BC in Indonesia. This research was conducted to portray the phylogenetic relationships of the Bali cattle with other cattle species in Malaysia based on maternal and paternal lineage. We analyzed the cytochrome c oxidase I (COI) mitochondrial gene and SRY of Y chromosome obtained from five species of the Bos genus (B. javanicus, Bos gaurus, Bos indicus, Bos taurus, and Bos grunniens). The water buffalo (Bubalus bubalis) was used as an outgroup. The phylogenetic relationships were observed by employing several algorithms: Neighbor-Joining (PAUP version 4.0), Maximum parsimony (PAUP version 4.0) and Bayesian inference (MrBayes 3.1). Results from the maternal data showed that the Bali cattle formed a monophyletic clade, and together with the B. gaurus clade formed a wild cattle clade. Results were supported by high bootstrap and posterior probability values together with genetic distance data. For the paternal lineage, the sequence variation is low (with parsimony informative characters: 2/660) resulting an unresolved Neighbor-Joining tree. However, Bali cattle and other domestic cattle appear in two monophyletic clades distinct from yak, gaur and selembu. This study expresses the potential of the COI gene in portraying the phylogenetic relationships between several Bos species which is important for conservation efforts especially in decision making since cattle is highly bred and hybrid breeds are often formed. Genetic conservation for this high quality beef cattle breed is important by maintaining its genetic characters to prevent extinction or even decreased the genetic quality.
    Matched MeSH terms: Genetic Markers/genetics*
  3. Golestan Hashemi FS, Rafii MY, Ismail MR, Mohamed MT, Rahim HA, Latif MA, et al.
    Gene, 2015 Jan 25;555(2):101-7.
    PMID: 25445269 DOI: 10.1016/j.gene.2014.10.048
    MRQ74, a popular aromatic Malaysian landrace, allows for charging considerably higher prices than non-aromatic landraces. Thus, breeding this profitable trait has become a priority for Malaysian rice breeding. Despite many studies on aroma genetics, ambiguities considering its genetic basis remain. It has been observed that identifying quantitative trait loci (QTLs) based on anchor markers, particularly candidate genes controlling a trait of interest, can increase the power of QTL detection. Hence, this study aimed to locate QTLs that influence natural variations in rice scent using microsatellites and candidate gene-based sequence polymorphisms. For this purpose, an F2 mapping population including 189 individual plants was developed by MRQ74 crosses with 'MR84', a non-scented Malaysian accession. Additionally, qualitative and quantitative approaches were applied to obtain a phenotype data framework. Consequently, we identified two QTLs on chromosomes 4 and 8. These QTLs explained from 3.2% to 39.3% of the total fragrance phenotypic variance. In addition, we could resolve linkage group 8 by adding six gene-based primers in the interval harboring the most robust QTL. Hence, we could locate a putative fgr allele in the QTL found on chromosome 8 in the interval RM223-SCU015RM (1.63cM). The identified QTLs represent an important step toward recognition of the rice flavor genetic control mechanism. In addition, this identification will likely accelerate the progress of the use of molecular markers for gene isolation, gene-based cloning, and marker-assisted selection breeding programs aimed at improving rice cultivars.
    Matched MeSH terms: Genetic Markers/genetics*
  4. Chua TH, Chong YV, Lim SH
    Pest Manag Sci, 2010 Apr;66(4):379-84.
    PMID: 19946858 DOI: 10.1002/ps.1886
    Identification of Bactrocera carambolae Drew and Hancock, B. papayae Drew and Hancock, B. tau Walker, B. latifrons Hendel, B. cucurbitae Coquillett, B. umbrosa Fabricius and B. caudata Fabricius would pose a problem if only a body part or an immature stage were available. Analysis of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of cytochrome oxidase I (COI) gene using primers COIR, COIF, UEA7 and UEA10 and restriction enzymes (MseI, RsaI and Alu1) was carried out. The banding profiles in the electrophoresis gel were analysed.
    Matched MeSH terms: Genetic Markers/genetics
  5. Amstutz U, Shear NH, Rieder MJ, Hwang S, Fung V, Nakamura H, et al.
    Epilepsia, 2014 Apr;55(4):496-506.
    PMID: 24597466 DOI: 10.1111/epi.12564
    To systematically review evidence on genetic risk factors for carbamazepine (CBZ)-induced hypersensitivity reactions (HSRs) and provide practice recommendations addressing the key questions: (1) Should genetic testing for HLA-B*15:02 and HLA-A*31:01 be performed in patients with an indication for CBZ therapy to reduce the occurrence of CBZ-induced HSRs? (2) Are there subgroups of patients who may benefit more from genetic testing for HLA-B*15:02 or HLA-A*31:01 compared to others? (3) How should patients with an indication for CBZ therapy be managed based on their genetic test results?
    Matched MeSH terms: Genetic Markers/genetics
  6. Ngui R, Lim YA, Chua KH
    PLoS One, 2012;7(7):e41996.
    PMID: 22844538 DOI: 10.1371/journal.pone.0041996
    Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species.
    Matched MeSH terms: Genetic Markers/genetics
  7. Hatin WI, Nur-Shafawati AR, Zahri MK, Xu S, Jin L, Tan SG, et al.
    PLoS One, 2011;6(4):e18312.
    PMID: 21483678 DOI: 10.1371/journal.pone.0018312
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.
    Matched MeSH terms: Genetic Markers/genetics
  8. Grigg MJ, William T, Piera KA, Rajahram GS, Jelip J, Aziz A, et al.
    Malar J, 2018 Dec 10;17(1):463.
    PMID: 30526613 DOI: 10.1186/s12936-018-2593-x
    BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia.

    METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count 

    Matched MeSH terms: Genetic Markers/genetics
  9. Yap FC, Yan YJ, Loon KT, Zhen JL, Kamau NW, Kumaran JV
    Anim Biotechnol, 2010 Oct;21(4):226-40.
    PMID: 20967642 DOI: 10.1080/10495398.2010.506334
    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.
    Matched MeSH terms: Genetic Markers/genetics
  10. Yong HS, Eamsobhana P, Song SL, Prasartvit A, Lim PE
    Acta Trop, 2015 Aug;148:66-71.
    PMID: 25930187 DOI: 10.1016/j.actatropica.2015.04.020
    Angiostrongylus cantonensis is an important emerging zoonotic parasite causing human eosinophilic meningitis (or meningoencephalitis) in many parts of the world. To-date there is only a single study using mitochondrial cytochrome b (CYTB) gene to determine its genetic structure in eight geographical localities in Thailand. The present study examined the molecular phylogeography of this rat lungworm and its phylogenetic relationship with congeners using CYTB gene marker. A total of 15 CYTB haplotypes was found in 37 sequences from 14 geographical localities (covering north, west, east, central and south regions) in Thailand. These CYTB haplotypes were distinct from those of A. cantonensis for China and Hawaii. In Thailand, some CYTB haplotypes appeared to be confined to specific geographical localities. The partial CYTB DNA nucleotide sequences separated unequivocally the A. cantonensis isolates of Thailand, China and Hawaii as well as the congeners Angiostrongylus malaysiensis, A. costaricensis and Angiostrongylus vasorum, with A. malaysiensis grouped with A. cantonensis and A. costaricensis grouped with A. vasorum. Likewise the congeners of Metastrongylus and Onchocerca genera could also be clearly differentiated. The present study added two new definitive hosts (Bandicota savilei and Rattus losea) and three new localities (Mae Hong Son in the north, Tak in the west, and Phang Nga in the south) for A. malaysiensis in Thailand, indicating its wide occurrence in the country. Three CYTB haplotypes were found in the Thailand samples of A. malaysiensis. In addition to differentiation of congeners, CYTB gene marker could be used for determining the genetic diversity of a given population/taxon.
    Matched MeSH terms: Genetic Markers/genetics*
  11. Lee KT, Tan JK, Lam AK, Gan SY
    Crit Rev Oncol Hematol, 2016 Jul;103:1-9.
    PMID: 27179594 DOI: 10.1016/j.critrevonc.2016.04.006
    Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.
    Matched MeSH terms: Genetic Markers/genetics
  12. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, et al.
    Mediators Inflamm, 2014;2014:924184.
    PMID: 24812443 DOI: 10.1155/2014/924184
    Growing numbers of "electromagnetic hypersensitive" (EHS) people worldwide self-report severely disabling, multiorgan, non-specific symptoms when exposed to low-dose electromagnetic radiations, often associated with symptoms of multiple chemical sensitivity (MCS) and/or other environmental "sensitivity-related illnesses" (SRI). This cluster of chronic inflammatory disorders still lacks validated pathogenetic mechanism, diagnostic biomarkers, and management guidelines. We hypothesized that SRI, not being merely psychogenic, may share organic determinants of impaired detoxification of common physic-chemical stressors. Based on our previous MCS studies, we tested a panel of 12 metabolic blood redox-related parameters and of selected drug-metabolizing-enzyme gene polymorphisms, on 153 EHS, 147 MCS, and 132 control Italians, confirming MCS altered (P < 0.05-0.0001) glutathione-(GSH), GSH-peroxidase/S-transferase, and catalase erythrocyte activities. We first described comparable-though milder-metabolic pro-oxidant/proinflammatory alterations in EHS with distinctively increased plasma coenzyme-Q10 oxidation ratio. Severe depletion of erythrocyte membrane polyunsaturated fatty acids with increased ω 6/ ω 3 ratio was confirmed in MCS, but not in EHS. We also identified significantly (P = 0.003) altered distribution-versus-control of the CYP2C19∗1/∗2 SNP variants in EHS, and a 9.7-fold increased risk (OR: 95% C.I. = 1.3-74.5) of developing EHS for the haplotype (null)GSTT1 + (null)GSTM1 variants. Altogether, results on MCS and EHS strengthen our proposal to adopt this blood metabolic/genetic biomarkers' panel as suitable diagnostic tool for SRI.
    Matched MeSH terms: Genetic Markers/genetics
  13. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Genetic Markers/genetics
  14. Lau TP, Lian LH, Cheah PL, Looi LM, Roslani AC, Goh KL, et al.
    Eur J Cancer Prev, 2017 11;26(6):506-510.
    PMID: 28059856 DOI: 10.1097/CEJ.0000000000000336
    X-ray repair cross-complementing group 1 (XRCC1) is one of the key components in the base excision repair pathway that repairs erroneous DNA lesions and removes nonbulky base adducts for the maintenance of genome integrity. Studies have revealed that differences in individual DNA repair capacity can impact the interindividual variation in cancer susceptibility, tumour aggressiveness and treatment response. The relationship between XRCC1 and sporadic colorectal cancer (CRC) susceptibility, which is hitherto inconclusive, has been explored in many association studies of different populations. In view of the conflicting findings generated, we aimed to investigate the association between XRCC1 and genetic predisposition to CRC among Malaysians. The present case-control association study was conducted on 130 CRC patients and 212 age-matched healthy controls. The genotyping of XRCC1 Arg194Trp, Arg280His and Arg399Gln single nucleotide polymorphisms was performed with allele-specific real-time PCR approach. This was followed by basic statistical analysis on the single nucleotide polymorphisms and haplotype data obtained. No significant difference in the allele and genotype frequencies was observed between CRC patients and healthy controls (P>0.05). There was also no association observed between XRCC1 haplotypes and CRC (P>0.05). In conclusion, a positive association between XRCC1 gene polymorphisms and CRC risk was not established in our Malaysian population.
    Matched MeSH terms: Genetic Markers/genetics
  15. Ho WK, Chai HH, Kendabie P, Ahmad NS, Jani J, Massawe F, et al.
    BMC Genomics, 2017 02 20;18(1):192.
    PMID: 28219341 DOI: 10.1186/s12864-016-3393-8
    BACKGROUND: Bambara groundnut [Vigna subterranea (L) Verdc.] is an indigenous legume crop grown mainly in subsistence and small-scale agriculture in sub-Saharan Africa for its nutritious seeds and its tolerance to drought and poor soils. Given that the lack of ex ante sequence is often a bottleneck in marker-assisted crop breeding for minor and underutilised crops, we demonstrate the use of limited genetic information and resources developed within species, but linked to the well characterised common bean (Phaseolus vulgaris) genome sequence and the partially annotated closely related species; adzuki bean (Vigna angularis) and mung bean (Vigna radiata). From these comparisons we identify conserved synteny blocks corresponding to the Linkage Groups (LGs) in bambara groundnut genetic maps and evaluate the potential to identify genes in conserved syntenic locations in a sequenced genome that underlie a QTL position in the underutilised crop genome.

    RESULTS: Two individual intraspecific linkage maps consisting of DArTseq markers were constructed in two bambara groundnut (2n = 2x = 22) segregating populations: 1) The genetic map of Population IA was derived from F2lines (n = 263; IITA686 x Ankpa4) and covered 1,395.2 cM across 11 linkage groups; 2) The genetic map of Population TD was derived from F3lines (n = 71; Tiga Nicuru x DipC) and covered 1,376.7 cM across 11 linkage groups. A total of 96 DArTseq markers from an initial pool of 142 pre-selected common markers were used. These were not only polymorphic in both populations but also each marker could be located using the unique sequence tag (at selected stringency) onto the common bean, adzuki bean and mung bean genomes, thus allowing the sequenced genomes to be used as an initial 'pseudo' physical map for bambara groundnut. A good correspondence was observed at the macro synteny level, particularly to the common bean genome. A test using the QTL location of an agronomic trait in one of the bambara groundnut maps allowed the corresponding flanking positions to be identified in common bean, mung bean and adzuki bean, demonstrating the possibility of identifying potential candidate genes underlying traits of interest through the conserved syntenic physical location of QTL in the well annotated genomes of closely related species.

    CONCLUSIONS: The approach of adding pre-selected common markers in both populations before genetic map construction has provided a translational framework for potential identification of candidate genes underlying a QTL of trait of interest in bambara groundnut by linking the positions of known genetic effects within the underutilised species to the physical maps of other well-annotated legume species, without the need for an existing whole genome sequence of the study species. Identifying the conserved synteny between underutilised species without complete genome sequences and the genomes of major crops and model species with genetic and trait data is an important step in the translation of resources and information from major crop and model species into the minor crop species. Such minor crops will be required to play an important role in future agriculture under the effects of climate change.

    Matched MeSH terms: Genetic Markers/genetics
  16. Yahya N, Chua XJ, Manan HA, Ismail F
    Strahlenther Onkol, 2018 08;194(8):780-786.
    PMID: 29774397 DOI: 10.1007/s00066-018-1303-5
    PURPOSE: This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies.

    MATERIALS AND METHODS: Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.

    RESULTS: A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.

    CONCLUSION: A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

    Matched MeSH terms: Genetic Markers/genetics
  17. Underwood AP, Bianco AE
    Mol Biochem Parasitol, 1999 Mar 15;99(1):1-10.
    PMID: 10215019
    Random amplification of polymorphic DNA (RAPD) was used to analyse genomic DNA from virgin females and males of Brugia malayi, with a view to identifying sex-specific differences predicted by an XX/XY system of chromosomal sex determination. A product of 2338 bp, amplified with the arbitrary primer 5' GTTGCGATCC 3', was obtained exclusively from males. Primers based on the sequence of this product amplified a DNA fragment of the expected size from each of two independent isolates of B. malayi (from Malaysia and Indonesia) by PCR. No reaction product was obtained from the closely related species Brugia pahangi. In a genetic cross between B. malayi males and B. pahangi females, F1 hybrid microfilariae were PCR-positive, indicating that the locus is paternally-inherited. Southern blotting demonstrated that the target sequence resides in the high molecular weight fraction of genomic DNA, confirming that it is of chromosomal, rather than mitochondrial, origin. Sequencing of the locus revealed significant similarity with members of a family of reverse transcriptase-like genes in Caenorhabditis elegans. In-frame stops indicate that the gene is non-functional, but multiple bands of hybridisation in Southern blots suggest that the RT sequence may be the relic of a transposable element. Multiple repeats of the dinucleotide AT occurred in another region of the sequence. These varied in number between the two isolates of B. malayi in the manner of a microsatellite, surprisingly the first to be described from the B. malayi genome. Because of its association with the Y chromosome, we have given the locus the acronym TOY (Tag On Y). Identification of this chromosome-specific marker confirms the XX/XY heterogametic karyotype in B. malayi and opens the way to elucidation of the role of Y in sex determination.
    Matched MeSH terms: Genetic Markers/genetics*
  18. Azizah MR, Ainol SS, Kong NCT, Normaznah Y, Rahim MN
    Korean J. Intern. Med., 2001 Jun;16(2):123-31.
    PMID: 11590899 DOI: 10.3904/kjim.2001.16.2.123
    BACKGROUND: Studies have shown that certain genes within the major histocompatibility complex predispose to systemic lupus erythematosus (SLE) and may influence clinical and autoantibody expression. Thus, we studied the frequency of HLA-DR, -DQA, -DQB and -DPB alleles in ethnic Malays with SLE to determine the role of these genes in determining disease susceptibility and their association with clinical and immunological manifestations.
    METHODS: Fifty-six Malay SLE patients were enrolled into the study. Demographic, clinical and immunological findings were obtained from medical records. HLA-DR, DQ and DP typing were done using modified PCR-RELP. Controls were from ethnically-matched healthy individuals.
    RESULTS: We found a strongly significant association of the DR2 and DQB1 *0501 and DQB1*0601 (pcorr = 0.03, rr = 3.83, pcorr = 0.0036, rr = 4.56 and pcorr = 0.0048 and rr = 6.0, respectively). There was also a weak increase of DQB1*0.201 and DPB1*0.0901 with a weak decrease of DQA1*0601 and DQB1*0503 and *0301 which were not significant after corrections for multiple comparisons were made. There was a significant positive association of DR2 and DQB1*0501 with renal involvement and DR8 with alopecia. A nonsignificant increase of DQB1*0503 in patients with photosensitivity was noted. Significant autoantibody associations were also found: DQB1*0601 with anti-Sm/RNP, DR2 with antiSSA (Ro)/SSB (La), and DR2, DQB1*0501 and *0601 with antibodies to ds DNA. There was no specific DR, DQ or DP associations with age of disease onset (below 30 years or those at or above 30 years).
    CONCLUSION: Our data suggests the role of the HLA class II genes in conferring SLE susceptibility and in clinical and autoantibody expression.
    Study site: SLE Clinic, Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: Genetic Markers/genetics
  19. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, et al.
    Nat Genet, 2016 Aug;48(8):959-964.
    PMID: 27348299 DOI: 10.1038/ng.3599
    The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.
    Matched MeSH terms: Genetic Markers/genetics*
  20. Lesseur C, Diergaarde B, Olshan AF, Wünsch-Filho V, Ness AR, Liu G, et al.
    Nat Genet, 2016 Dec;48(12):1544-1550.
    PMID: 27749845 DOI: 10.1038/ng.3685
    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10-8), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10-9). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10-6) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    Matched MeSH terms: Genetic Markers/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links