Displaying publications 1 - 20 of 121 in total

Abstract:
Sort:
  1. Yang MJ, Liu JH, Wan XS, Zhang QL, Fu DY, Wang XB, et al.
    Mitochondrial DNA B Resour, 2020 Oct 27;5(3):3638-3639.
    PMID: 33367040 DOI: 10.1080/23802359.2020.1831984
    The black-winged fly, Felderimyia fuscipennis (Diptera: Tephritidae), is an insect pest of bamboo shoot, mainly distributed in Thailand, Malaysia and Yunnan Province and Guangxi Autonomous Region, China. The complete sequence of the mitogenome of F. fuscipennis has been determined in this study. The whole mitogenome sequence is 16,536 bp in length, which totally contains 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a non-coding region (putative control region, CR). The phylogeny indicates that F. fuscipennis of subfamily Trypetinae was monophyletic and clearly separated from both Dacinae and Tephritinae with high bootstrap value supported.
    Matched MeSH terms: Genome, Mitochondrial
  2. Yan J, Tian C, Zhou J, Bauer AM, Lee Grismer L, Zhou K
    Mitochondrial DNA, 2014 Jun;25(3):181-2.
    PMID: 23631365 DOI: 10.3109/19401736.2013.792066
    We sequenced the complete mitochondrial genome of the Tioman Island rock gecko, Cnemaspis limi, which is known as an endemic species to Malaysia. The complete mitogenome is 16,680 bp in size, consisting of 37 genes coding for 13 proteins, 22 transfer RNAs, two ribosomal RNAs and one control region. The A + T content of the overall base composition of H-strand is 53.09% (T: 23.20%, C: 32.48%, A: 29.89% and G: 14.43%). The major non-coding region (control region) is 1254 bp in length with the A + T content of 55.09% and four replicates of a 76-bp repeat within this region.
    Matched MeSH terms: Genome, Mitochondrial*
  3. Zhao H, Kong X, Zhou C
    Mitochondrial DNA, 2014 Oct;25(5):342-4.
    PMID: 23795847 DOI: 10.3109/19401736.2013.800492
    The Pangasius sutchi is an important ornamental and economic fish in Southeast Asia e.g. Thailand, Malaysia and China. The complete mitochondrial genome sequence of P. sutchi has been sequenced, which contains 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes and a non-coding control region with the total length of 16,522 bp. The gene order and composition are similar to most of other vertebrates. Just like most other vertebrates, the bias of G and C was found in different region/genes statistics results. Most of the genes are encoded on heavy strand, except for eight tRNA and ND6 genes. The mitogenome sequence of P. sutchi would contribute to better understand population genetics, evolution of this lineage.
    Matched MeSH terms: Genome, Mitochondrial*
  4. Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, et al.
    J Helminthol, 2024 Apr 15;98:e33.
    PMID: 38618902 DOI: 10.1017/S0022149X24000221
    We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
    Matched MeSH terms: Genome, Mitochondrial*
  5. Cui L, Rao D, Zhang M
    Mitochondrial DNA B Resour, 2020 Nov 03;5(3):3670-3672.
    PMID: 33367054 DOI: 10.1080/23802359.2020.1832595
    The Asiatic softshell turtle, also known as the black-rayed softshell turtle (Amyda cartilaginea; Accession no: MT039230), is found in northeastern India (Mizoram), Brunei Darussalam, Indonesia, Malaysia, Singapore, Myanmar, Laos, Vietnam, Cambodia, and Thailand. This turtle is thought to have been introduced into the Sunda Islands, Sulawesi, and Yunnan, China, through the Malay Peninsula to Sumatra, Java, and Borneo. Herein, we determined the complete mitochondrial genome of A. cartilaginea for the first time using next-generation sequencing (NGS). The assembled mitogenome was 16,763 bp in length and encoded 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes (12S rRNA and 16S rRNA), and one control region (CR). The PCGs based maximum-likelihood phylogeny discriminated A. cartilaginea from other Testudines and clusters within family Trionychidae with the sister taxa of Nilssonia nigricans.
    Matched MeSH terms: Genome, Mitochondrial
  6. Wang M, Yan S, Brown CL, Shaharom-Harrison F, Shi SF, Yang TB
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3865-3875.
    PMID: 25319302
    To examine the phylogeographical pattern of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) in the South China Sea, fragments of mitochondrial cytochrome c oxidase subunit I and NADH dehydrogenase subunit 2 genes were obtained for 220 individuals collected from 8 localities along the southeast coast of China and 1 locality in Terengganu, Malaysia. Based on these two genes, two and three distinct clades with geographic signals were revealed on the phylogenetic trees respectively. The divergence between these clades was estimated to occur in the late Pleistocene. Analysis of molecular variance and pairwise FSTsuggested a high rate of gene flow among individuals sampled from the Chinese coast, but with obvious genetic differentiation from the Malaysian population. Mismatch distribution and neutrality tests indicated that the T. nebulosi population experienced expansion in Pleistocene low sea level periods. Vicariance was considered to account for the genetic divergence between Chinese and Malaysian populations, while sea level fluctuations and mainland-island connections during glacial cycles were associated with the slight genetic divergence between the populations along the mainland coast of China and those off Sanya. On the contrary, oceanographic circulations and host migration could lead to genetic homogeneity of populations distributed along the mainland coast of China.
    Matched MeSH terms: Genome, Mitochondrial/genetics*
  7. Patel RP, Förster DW, Kitchener AC, Rayan MD, Mohamed SW, Werner L, et al.
    R Soc Open Sci, 2016 Oct;3(10):160350.
    PMID: 27853549
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.
    Matched MeSH terms: Genome, Mitochondrial
  8. Crampton-Platt A, Timmermans MJ, Gimmel ML, Kutty SN, Cockerill TD, Vun Khen C, et al.
    Mol Biol Evol, 2015 Sep;32(9):2302-16.
    PMID: 25957318 DOI: 10.1093/molbev/msv111
    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
    Matched MeSH terms: Genome, Mitochondrial
  9. Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, et al.
    Genome Biol, 2021 04 29;22(1):120.
    PMID: 33910595 DOI: 10.1186/s13059-021-02336-9
    BACKGROUND: Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly.

    RESULTS: As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100-300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization.

    CONCLUSIONS: Our results indicate that even in the "simple" case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.

    Matched MeSH terms: Genome, Mitochondrial*
  10. Gan HM, Amornsakun T, Tan MP
    Mitochondrial DNA B Resour, 2017 Mar 17;2(1):148-149.
    PMID: 33473747 DOI: 10.1080/23802359.2017.1298418
    We sequenced and assembled three whole mitogenome sequences of the commercially important snakeskin gourami Trichopodus pectoralis isolated from Malaysia (introduced), Viet Nam (native) and Thailand (native). The mitogenome length range from 16,397 to 16,420 bp. The final partitioned nucleotide alignment consists of 14,002 bp and supports the monophyly of the genus Trichopodus (95% ultrafast bootstrap support) with T. trichopterus forming a sister group with the members of T. pectoralis.
    Matched MeSH terms: Genome, Mitochondrial
  11. Okuyama H, Tingek S, Takahashi JI
    Mitochondrial DNA B Resour, 2017 Jul 31;2(2):475-476.
    PMID: 33473869 DOI: 10.1080/23802359.2017.1361344
    The complete mitochondrial genome of the cavity-nesting honeybee Apis cerana from Sabah on Borneo Island was analyzed using next-generation sequencing. The mitochondrial genome of A. cerana was a circular molecule of 15,884 bp and was similar to that of the other cavity-nesting honeybee species. The average AT content in the A. cerana mitochondrial genome was 84.4%. It was predicted to contain 13 protein-coding, 22 tRNA, and two rRNA genes, along with one A + T-rich control region.
    Matched MeSH terms: Genome, Mitochondrial
  12. Wakamiya T, Tingek S, Okuyama H, Kiyoshi T, Takahashi JI
    Mitochondrial DNA B Resour, 2017 Jan 17;2(1):24-25.
    PMID: 33490434 DOI: 10.1080/23802359.2016.1275847
    In this study, we analyzed the complete mitochondrial genome of the cavity-nesting honeybee, A. koschevnikovi. The mitochondrial genome of A. koschevnikovi was observed to be a circular molecule of 15,278 bp and was similar to that of the other cavity-nesting honeybee species. The average AT content in the A. koschevnikovi mitochondrial genome was 84%. It was predicted to contain 13 protein-coding, 24 tRNA and two rRNA genes, along with one A + T-rich control region, besides three tRNA-Met repeats.
    Matched MeSH terms: Genome, Mitochondrial
  13. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
    Matched MeSH terms: Genome, Mitochondrial*
  14. Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, et al.
    Heredity (Edinb), 2017 05;118(5):466-476.
    PMID: 28051058 DOI: 10.1038/hdy.2016.120
    Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
    Matched MeSH terms: Genome, Mitochondrial*
  15. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    PLoS One, 2016;11(2):e0148201.
    PMID: 26840430 DOI: 10.1371/journal.pone.0148201
    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
    Matched MeSH terms: Genome, Mitochondrial*
  16. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    Genetica, 2016 Oct;144(5):513-521.
    PMID: 27502829
    Zeugodacus caudatus is a pest of pumpkin flowers. It has a Palearctic and Oriental distribution. We report here the complete mitochondrial genome of the Malaysian and Indonesian samples of Z. caudatus determined by next-generation sequencing of genomic DNA and determine their taxonomic status as sibling species and phylogeny with other taxa of the genus Zeugodacus. The whole mitogenome of both samples possessed 37 genes (13 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region. The mitogenome of the Indonesian sample (15,885 bp) was longer than that of the Malaysian sample (15,866 bp). In both samples, TΨC-loop was absent in trnF and DHU-loop was absent in trnS1. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with the two samples of Z. caudatus forming a sister group and the genus Zeugodacus was monophyletic. The Malaysian and Indonesian samples of Z. caudatus have a genetic distance of p = 7.8 % based on 13 PCGs and p = 7.0 % based on 15 mitochondrial genes, indicating status of sibling species. They are proposed to be accorded specific status as members of a species complex.
    Matched MeSH terms: Genome, Mitochondrial*
  17. Zhang X, Li C, Zhou Y, Huang J, Yu T, Liu X, et al.
    iScience, 2020 Apr 24;23(4):101032.
    PMID: 32304863 DOI: 10.1016/j.isci.2020.101032
    Hanging Coffin is a unique and ancient burial custom that has been practiced in southern China, Southeast Asia, and near Oceania regions for more than 3,000 years. Here, we conducted mitochondrial whole-genome analyses of 41 human remains sampled from 13 Hanging Coffin sites in southern China and northern Thailand, which were dated between ∼2,500 and 660 years before present. We found that there were genetic connections between the Hanging Coffin people living in different geographic regions. Notably, the matrilineal genetic diversity of the Hanging Coffin people from southern China is much higher than those from northern Thailand, consistent with the hypothesized single origin of the Hanging Coffin custom in southern China about 3,600 years ago, followed by its dispersal in southern China through demic diffusion, whereas the major dispersal pattern in Southeast Asia is cultural assimilation in the past 2,000 years.
    Matched MeSH terms: Genome, Mitochondrial
  18. Norfatimah MY, Teh LK, Salleh MZ, Mat Isa MN, SitiAzizah MN
    Gene, 2014 Sep 15;548(2):263-9.
    PMID: 25042454 DOI: 10.1016/j.gene.2014.07.044
    This is the first documentation of the complete mitochondrial genome sequence of the Malaysian Mahseer, Tor tambroides. The 16,690 bp mitogenome with GenBank accession number JX444718 contains 13 protein genes, 22 tRNAs, two rRNAs, and a noncoding control region (D-loop) as is typical of most vertebrates. The phylogenomic reconstruction of this newly generated data with 21 Cypriniformes GenBank accession ID concurs with the recognized status of T. tambroides within the subfamily Cyprininae. This is in agreement with previous hypotheses based on morphological and partial mitochondrial analyses.
    Matched MeSH terms: Genome, Mitochondrial*
  19. Wilson JJ, Brandon-Mong GJ, Gan HM, Sing KW
    PMID: 29591722 DOI: 10.1080/24701394.2018.1455189
    Consensus on the optimal high-throughput sequencing (HTS) approach to examine biodiversity in mixed terrestrial arthropod samples has not been reached. Metatranscriptomics could increase the proportion of taxonomically informative mitochondrial reads in HTS outputs but has not been investigated for terrestrial arthropod samples. We compared the efficiency of 16S rRNA metabarcoding, metagenomics and metatranscriptomics for detecting species in a mixed terrestrial arthropod sample (pooled DNA/RNA from 38 taxa). 16S rRNA metabarcoding and nuclear rRNA-depleted metatranscriptomics had the highest detection rate with 97% of input species detected. Based on cytochrome c oxidase I, metagenomics had the highest detection rate with 82% of input species detected, but metatranscriptomics produced a larger proportion of reads matching (Sanger) reference sequences. Metatranscriptomics with nuclear rRNA depletion may offer advantages over metabarcoding through reducing the number of spurious operational taxonomic units while retaining high detection rates, and offers natural enrichment of mitochondrial sequences which may enable increased species detection rates compared with metagenomics.
    Matched MeSH terms: Genome, Mitochondrial*
  20. Phillips MJ, Shazwani Zakaria S
    Mol Phylogenet Evol, 2021 05;158:107082.
    PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082
    Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
    Matched MeSH terms: Genome, Mitochondrial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links