Displaying publications 1 - 20 of 121 in total

Abstract:
Sort:
  1. Zhang X, Li C, Zhou Y, Huang J, Yu T, Liu X, et al.
    iScience, 2020 Apr 24;23(4):101032.
    PMID: 32304863 DOI: 10.1016/j.isci.2020.101032
    Hanging Coffin is a unique and ancient burial custom that has been practiced in southern China, Southeast Asia, and near Oceania regions for more than 3,000 years. Here, we conducted mitochondrial whole-genome analyses of 41 human remains sampled from 13 Hanging Coffin sites in southern China and northern Thailand, which were dated between ∼2,500 and 660 years before present. We found that there were genetic connections between the Hanging Coffin people living in different geographic regions. Notably, the matrilineal genetic diversity of the Hanging Coffin people from southern China is much higher than those from northern Thailand, consistent with the hypothesized single origin of the Hanging Coffin custom in southern China about 3,600 years ago, followed by its dispersal in southern China through demic diffusion, whereas the major dispersal pattern in Southeast Asia is cultural assimilation in the past 2,000 years.
    Matched MeSH terms: Genome, Mitochondrial
  2. Yusoff AAM, Abdullah WSW, Khair SZNM, Radzak SMA
    Oncol Rev, 2019 Jan 14;13(1):409.
    PMID: 31044027 DOI: 10.4081/oncol.2019.409
    Mitochondria are cellular machines essential for energy production. The biogenesis of mitochondria is a highly complex and it depends on the coordination of the nuclear and mitochondrial genome. Mitochondrial DNA (mtDNA) mutations and deletions are suspected to be associated with carcinogenesis. The most described mtDNA deletion in various human cancers is called the 4977-bp common deletion (mDNA4977) and it has been explored since two decades. In spite of that, its implication in carcinogenesis still unknown and its predictive and prognostic impact remains controversial. This review article provides an overview of some of the cellular and molecular mechanisms underlying mDNA4977 formation and a detailed summary about mDNA4977 reported in various types of cancers. The current knowledges of mDNA4977 as a prognostic and predictive marker are also discussed.
    Matched MeSH terms: Genome, Mitochondrial
  3. Last PR, Naylor GJ, Manjaji-Matsumoto BM
    Zootaxa, 2016 Jul 21;4139(3):345-68.
    PMID: 27470808 DOI: 10.11646/zootaxa.4139.3.2
    The higher-level taxonomy of the stingrays (Dasyatidae) has never been comprehensively reviewed. Recent phylogenetic studies, supported by morphological data, have provided evidence that the group is monophyletic and consists of four major subgroups, the subfamilies Dasyatinae, Neotrygoninae, Urogymninae and Hypolophinae. A morphologically based review of 89 currently recognised species, undertaken for a guide to the world's rays, indicated that most of the currently recognised dasyatid genera are not monophyletic groups. These findings were supported by molecular analyses using the NADH2 gene for about 77 of these species, and this topology is supported by preliminary analyses base on whole mitochondrial genome comparisons. These molecular analyses, based on data generated from the Chondrichthyan Tree of Life project, are the most taxon-rich data available for this family. Material from all of the presently recognised genera (Dasyatis, Pteroplatytrygon and Taeniurops [Dasyatinae]; Neotrygon and Taeniura [Neotrygoninae]; Himantura and Urogymnus [Urogymninae]; and Makararaja and Pastinachus [Hypolophinae]), are included and their validity largely supported. Urogymnus and the two most species rich genera, Dasyatis and Himantura, are not considered to be monophyletic and were redefined based on external morphology. Seven new genus-level taxa are erected (Megatrygon and Telatrygon [Dasyatinae]; Brevitrygon, Fluvitrygon, Fontitrygon, Maculabatis and Pateobatis [Urogymninae], and an additional three (Bathytoshia, Hemitrygon and Hypanus [Dasyatinae]) are resurrected from the synonymy of Dasyatis. The monotypic genus Megatrygon clustered with 'amphi-American Himantura' outside the Dasyatidae, and instead as the sister group of the Potamotrygonidae and Urotrygonidae. Megatrygon is provisionally retained in the Dasyatinae pending further investigation of its internal anatomy. The morphologically divergent groups, Bathytoshia and Pteroplatytrygon, possibly form a single monophyletic group so further investigation is needed to confirm the validity of Pteroplatytrygon. A reclassification of the family Dasyatidae is provided and the above taxa are defined based on new morphological data.
    Matched MeSH terms: Genome, Mitochondrial
  4. Gan HM, Grandjean F, Jenkins TL, Austin CM
    BMC Genomics, 2019 May 03;20(1):335.
    PMID: 31053062 DOI: 10.1186/s12864-019-5704-3
    BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation.

    RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes.

    CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.

    Matched MeSH terms: Genome, Mitochondrial*
  5. Mohd Salleh F, Ramos-Madrigal J, Peñaloza F, Liu S, Mikkel-Holger SS, Riddhi PP, et al.
    Gigascience, 2017 08 01;6(8):1-8.
    PMID: 28873965 DOI: 10.1093/gigascience/gix053
    Southeast (SE) Asia is 1 of the most biodiverse regions in the world, and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia's genetic diversity is still poorly characterized. The growing interest in using environmental DNA to assess and monitor SE Asian species, in particular threatened mammals-has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples. Approximately 55 gigabases of raw sequence were generated. From this data, we assembled 72 complete mitogenome sequences, with an average depth of coverage of ×102.9 and ×55.2 for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Our new database of 52 taxa will strongly enhance the utility of environmental DNA approaches for monitoring mammals in SE Asia as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia's threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database.
    Matched MeSH terms: Genome, Mitochondrial*
  6. Song SL, Yong HS, Eamsobhana P
    J Helminthol, 2018 Jul;92(4):524-529.
    PMID: 28693647 DOI: 10.1017/S0022149X1700061X
    Angiostrongylus mackerrasae is a parasitic nematode of rats found in Australia. When first reported, it was referred to as A. cantonensis. Recent molecular studies, including the mitochondrial genome, indicate that it is highly similar to A. cantonensis. These studies did not include A. malaysiensis, another member of the A. cantonensis species complex, for comparison. The present study examined the genetic distance and phylogenetic relationship between the component taxa (A. cantonensis, A. mackerrasae and A. malaysiensis) of the A. cantonensis species complex, based on the 12 protein-coding genes (PCGs) of their mitochondrial genome. Both the nucleotide and amino acid sequences were analysed. Angiostrongylus mackerrasae and A. cantonensis are members of the same genetic lineage and both are genetically distinct from A. malaysiensis. The genetic distance based on concatenated nucleotide sequences of 12 mt-PCGs between A. mackerrasae and A. cantonensis from Thailand is p = 1.73%, while that between the Thai and Chinese taxa of A. cantonensis is p = 3.52%; the genetic distance between A. mackerrasae and A. cantonensis from China is p = 3.70%. The results indicate that A. mackerrasae and A. cantonensis belong to the same genetic lineage, and that A. mackerrasae may be conspecific with A. cantonensis. It remains to be resolved whether A. mackerrasae is conspecific with A. cantonensis or undergoing incipient speciation.
    Matched MeSH terms: Genome, Mitochondrial
  7. Cejp B, Jimi N, Aguado MT
    Zootaxa, 2023 Feb 21;5244(4):341-360.
    PMID: 37044457 DOI: 10.11646/zootaxa.5244.4.2
    The phylogenetic relationships of Syllidae have been analyzed in several studies during the last decades, resulting in highly congruent topologies. Most of the subfamilies were found to be monophyletic, while other groups (Eusyllinae and several genera) have been reorganized attending their phylogenetic relationships. However, there are still several enigmatic genera, which could not be assigned to any of the established subgroups. These enigmatic genera usually show a combination of characters indicating relationships with several different groups, and some show morphological traits unique to Syllidae. One of the most intriguing genera, still unclassified within Syllidae is Clavisyllis Knox. Herein, we provide a complete description of a new species Clavisyllis tenjini n. sp. from Japan. We sequence the complete mitochondrial genome, compare with the available data from other syllids, and perform a phylogenetic analysis of three genes (18S, 16S, COI), traditionally used in previous studies. Clavisyllis shows a unique combination of characters within Syllidae, such as nuchal lappets and large ovoid dorsal cirri. The new species has additional anterior appendages that have not been found in any other syllid. Our results show the genus is a member of Eusyllinae, closely related to Pionosyllis Malmgren. The mitochondrial gene order agrees with the considered plesiomorphic gene order in Annelida, which is present in all members of Eusyllinae investigated so far. Clavisyllis reproduces by epigamy, the reproductive mode of members of Eusyllinae. The present study contributes to the systematics of Syllidae, a complex group with a large number of species and striking reproductive modes.
    Matched MeSH terms: Genome, Mitochondrial*
  8. Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, et al.
    J Helminthol, 2024 Apr 15;98:e33.
    PMID: 38618902 DOI: 10.1017/S0022149X24000221
    We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
    Matched MeSH terms: Genome, Mitochondrial*
  9. Yoon KB, Kim JY, Park YC
    PMID: 25418628 DOI: 10.3109/19401736.2014.982571
    We describe the characteristics of complete mitogenome of C. brachyotis in this article. The complete mitogenome of C. brachyotis is 16,701 bp long with a total base composition of 32.4% A, 25.7% T, 27.7% C and 14.2% G. The mitogenome consists of 13 protein-coding genes (11,408 bp), (KM659865) two rRNA (12S rRNA and 16S rRNA) genes (2,539 bp), 22 tRNA genes (1518 bp) and one control region (1239 bp).
    Matched MeSH terms: Genome, Mitochondrial*
  10. Xie Z, Tan H, Lin F, Guan M, Waiho K, Fang S, et al.
    Mitochondrial DNA B Resour, 2018 Mar 27;3(1):397-398.
    PMID: 33474181 DOI: 10.1080/23802359.2018.1456374
    The complete mitochondrial genome sequence of Atergatis integerrimus from China has been amplified and sequenced in this study. The mitogenome assembly was found to be 15,924 bp in length with base composition of A (32.88%), G (10.58%), C (20.87%), T (35.66%), A + T (68.54%), and G + C (31.46%). It contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The phylogenetic position was constructed and the A. integerrimus was closely clustered with Pseudocarcinus gigas and Leptodius sanguineus. The complete mitochondrial genome sequence would be useful for further understanding the evolution of A. integerrimus.
    Matched MeSH terms: Genome, Mitochondrial
  11. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2021 Feb 11;6(2):502-504.
    PMID: 33628904 DOI: 10.1080/23802359.2021.1872433
    Two mitogenomes of long-tailed giant rat, Leopoldamys sabanus (Thomas, 1887), which belongs to the family Muridae were sequenced and assembled in this study. Both mitogenomes have a length of 15,973 bp and encode 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and one control region. The circular molecule of L. sabanus has a typical vertebrate gene arrangement. Phylogenetic and BLASTn analysis using 10 Leopoldamys species mitogenomes revealed sequence variation occurred within species from different time zones. Along with the taxonomic issues, this suggests a landscape change might influence genetic connectivity.
    Matched MeSH terms: Genome, Mitochondrial
  12. Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, et al.
    Mol Ecol, 2018 02;27(4):898-918.
    PMID: 29334409 DOI: 10.1111/mec.14488
    Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate-driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance-based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein-coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2-6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate-associated selection.
    Matched MeSH terms: Genome, Mitochondrial
  13. Yong HS, Song SL, Lim PE, Eamsobhana P, Suana IW
    PLoS One, 2016;11(2):e0148201.
    PMID: 26840430 DOI: 10.1371/journal.pone.0148201
    Bactrocera latifrons is a serious pest of solanaceous fruits and Bactrocera umbrosa is a pest of Artocarpus fruits, while Bactrocera melastomatos infests the fruit of Melastomataceae. They are members of the subgenus Bactrocera. We report here the complete mitochondrial genome of these fruit flies determined by next-generation sequencing and their phylogeny with other taxa of the subgenus Bactrocera. The whole mitogenomes of these three species possessed 37 genes namely, 13 protein-coding genes (PCGs), 2 rRNA and 22 tRNA genes. The mitogenome of B. latifrons (15,977 bp) was longer than those of B. melastomatos (15,954 bp) and B. umbrosa (15,898 bp). This difference can be attributed to the size of the intergenic spacers (283 bp in B. latifrons, 261 bp in B. melastomatos, and 211 bp in B. umbrosa). Most of the PCGs in the three species have an identical start codon, except for atp8 (adenosine triphosphate synthase protein 8), which had an ATG instead of GTG in B. umbrosa, whilst the nad3 (NADH dehydrogenase subunit 3) and nad6 (NADH dehydrogenase subunit 6) genes were characterized by an ATC instead of ATT in B. melastomatos. The three species had identical stop codon for the respective PCGs. In B. latifrons and B. melastomatos, the TΨC (thymidine-pseudouridine-cytidine)-loop was absent in trnF (phenylalanine) and DHU (dihydrouracil)-loop was absent in trnS1 (serine S1). In B. umbrosa, trnN (asparagine), trnC (cysteine) and trnF lacked the TψC-loop, while trnS1 lacked the DHU-stem. Molecular phylogeny based on 13 PCGs was in general concordant with 15 mitochondrial genes (13 PCGs and 2 rRNA genes), with B. latifrons and B. umbrosa forming a sister group basal to the other species of the subgenus Bactrocera which was monophyletic. The whole mitogenomes will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
    Matched MeSH terms: Genome, Mitochondrial*
  14. Yong HS, Song SL, Eamsobhana P, Lim PE
    Acta Trop, 2016 May 17;161:33-40.
    PMID: 27207134 DOI: 10.1016/j.actatropica.2016.05.002
    Angiostrongylus malaysiensis is a nematode parasite of various rat species. When first documented in Malaysia, it was referred to as A. cantonensis. Unlike A. cantonensis, the complete mitochondrial genome of A. malaysiensis has not been documented. We report here its complete mitogenome, its differentiation from A. cantonensis, and the phylogenetic relationships with its congeners and other Metastrongyloid taxa. The whole mitogenome of A. malaysiensis had a total length of 13,516bp, comprising 36 genes (12 PCGs, 2 rRNA and 22 tRNA genes) and a control region. It is longer than that of A. cantonensis (13,509bp). Its control region had a long poly T-stretch of 12bp which was not present in A. cantonensis. A. malaysiensis and A. cantonensis had identical start codon for the 12 PCGs, but four PCGs (atp6, cob, nad2, nad6) had different stop codon. The cloverleaf structure for the 22 tRNAs was similar in A. malaysiensis and A. cantonensis except the TΨC-arm was absent in trnV for A. malaysiensis but present in A. cantonensis. The Angiostrongylus genus was monophyletic, with A. malaysiensis and A. cantonensis forming a distinct lineage from that of A. costaricensis and A. vasorum. The genetic distance between A. malaysiensis and A. cantonensis was p=11.9% based on 12 PCGs, p=9.5% based on 2 rRNA genes, and p=11.6% based on 14 mt-genes. The mitogenome will prove useful for studies on phylogenetics and systematics of Angiostrongylus lungworms and other Metastrongyloid nematodes.
    Matched MeSH terms: Genome, Mitochondrial
  15. Yong HS, Song SL, Lim PE, Chan KG, Chow WL, Eamsobhana P
    Sci Rep, 2015;5:15155.
    PMID: 26472633 DOI: 10.1038/srep15155
    The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
    Matched MeSH terms: Genome, Mitochondrial
  16. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

    Matched MeSH terms: Genome, Mitochondrial/genetics*
  17. Norfatimah MY, Teh LK, Salleh MZ, Mat Isa MN, SitiAzizah MN
    Gene, 2014 Sep 15;548(2):263-9.
    PMID: 25042454 DOI: 10.1016/j.gene.2014.07.044
    This is the first documentation of the complete mitochondrial genome sequence of the Malaysian Mahseer, Tor tambroides. The 16,690 bp mitogenome with GenBank accession number JX444718 contains 13 protein genes, 22 tRNAs, two rRNAs, and a noncoding control region (D-loop) as is typical of most vertebrates. The phylogenomic reconstruction of this newly generated data with 21 Cypriniformes GenBank accession ID concurs with the recognized status of T. tambroides within the subfamily Cyprininae. This is in agreement with previous hypotheses based on morphological and partial mitochondrial analyses.
    Matched MeSH terms: Genome, Mitochondrial*
  18. Yong HS, Song SL, Lim PE, Eamsobhana P
    PLoS One, 2017;12(12):e0189325.
    PMID: 29216281 DOI: 10.1371/journal.pone.0189325
    The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes-PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship.
    Matched MeSH terms: Genome, Mitochondrial*
  19. Matthew P, Manjaji-Matsumoto BM, Rodrigues KF
    Mitochondrial DNA B Resour, 2018 Oct 12;3(2):943-944.
    PMID: 33474374 DOI: 10.1080/23802359.2018.1473725
    We report here the complete mitochondrial (mt) genomes of six individuals of Cheilinus undulatus (Napoleon Wrasse), an endangered marine fish species. The six mt DNA sequences had an average size of 17,000 kb and encoded 22 tRNA, two sRNA, 13 highly conserved protein coding genes and a control region. The polymorphic variation (control region) in these six individuals suggests their potential use as a specific marker for phylogeographic conservation. Moreover, the sequence polymorphism within the control region (D-loop) suggests that this locus can be applied for phylogenetic studies.
    Matched MeSH terms: Genome, Mitochondrial
  20. Yan J, Tian C, Zhou J, Bauer AM, Lee Grismer L, Zhou K
    Mitochondrial DNA, 2014 Jun;25(3):181-2.
    PMID: 23631365 DOI: 10.3109/19401736.2013.792066
    We sequenced the complete mitochondrial genome of the Tioman Island rock gecko, Cnemaspis limi, which is known as an endemic species to Malaysia. The complete mitogenome is 16,680 bp in size, consisting of 37 genes coding for 13 proteins, 22 transfer RNAs, two ribosomal RNAs and one control region. The A + T content of the overall base composition of H-strand is 53.09% (T: 23.20%, C: 32.48%, A: 29.89% and G: 14.43%). The major non-coding region (control region) is 1254 bp in length with the A + T content of 55.09% and four replicates of a 76-bp repeat within this region.
    Matched MeSH terms: Genome, Mitochondrial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links