Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Goh HH
    Adv Exp Med Biol, 2018 11 2;1102:69-80.
    PMID: 30382569 DOI: 10.1007/978-3-319-98758-3_5
    This chapter introduces different aspects of bioinformatics with a brief discussion in the systems biology context. Example applications in network pharmacology of traditional Chinese medicine, systems metabolic engineering, and plant genome-scale modelling are described. Lastly, this chapter concludes on how bioinformatics helps to integrate omics data derived from various studies described in previous chapters for a holistic understanding of secondary metabolite production in P. minus.
    Matched MeSH terms: Genome, Plant
  2. Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J
    Ann Bot, 2017 Nov 28;120(6):893-909.
    PMID: 29155926 DOI: 10.1093/aob/mcx112
    Background and Aims: Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots.

    Methods: First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces.

    Key Results: The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots.

    Conclusion: Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.

    Matched MeSH terms: Genome, Plant*
  3. Chan KL, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low EL
    BMC Bioinformatics, 2017 Jan 27;18(Suppl 1):1426.
    PMID: 28466793 DOI: 10.1186/s12859-016-1426-6
    BACKGROUND: Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion.

    RESULTS: We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure).

    CONCLUSIONS: Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.

    Matched MeSH terms: Genome, Plant/genetics*
  4. Pipatchartlearnwong K, Swatdipong A, Vuttipongchaikij S, Apisitwanich S
    BMC Genet, 2017 10 12;18(1):88.
    PMID: 29025415 DOI: 10.1186/s12863-017-0554-y
    BACKGROUND: Borassus flabellifer or Asian Palmyra palm is an important crop for local economies in the South and Southeast Asia for its fruit and palm sugar production. Archeological and historical evidence indicated the presence of this species in Southeast Asia dating back at least 1500 years. B. flabellifer is believed to be originated in Africa, spread to South Asia and introduced into Southeast Asia through commercial routes and dissemination of cultures, however, the nature of its invasion and settlement in Thailand is unclear.

    RESULTS: Here, we analyzed genetic data of 230 B. flabellifer accessions across Thailand using 17 EST-SSR and 12 gSSR polymorphic markers. Clustering analysis revealed that the population consisted of two genetic clusters (STRUCTURE K = 2). Cluster I is found mainly in southern Thailand, while Cluster II is found mainly in the northeastern. Those found in the central are of an extensive mix between the two. These two clusters are in moderate differentiation (F ST = 0.066 and N M = 3.532) and have low genetic diversity (HO = 0.371 and 0.416; AR = 2.99 and 3.19, for the cluster I and II respectively). The minimum numbers of founders for each genetic group varies from 3 to 4 individuals, based on simulation using different allele frequency assumptions. These numbers coincide with that B. flabellifer is dioecious, and a number of seeds had to be simultaneously introduced for obtaining both male and female founders.

    CONCLUSIONS: From these data and geographical and historical evidence, we hypothesize that there were at least two different invasive events of B. flabellifer in Thailand. B. flabellifer was likely brought through the Straits of Malacca to be propagated in the southern Thailand as one of the invasive events before spreading to the central Thailand. The second event likely occurred in Khmer Empire, currently Cambodia, before spreading to the northeastern Thailand.

    Matched MeSH terms: Genome, Plant
  5. Kwong QB, Teh CK, Ong AL, Chew FT, Mayes S, Kulaveerasingam H, et al.
    BMC Genet, 2017 Dec 11;18(1):107.
    PMID: 29228905 DOI: 10.1186/s12863-017-0576-5
    BACKGROUND: Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits.

    RESULTS: The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods.

    CONCLUSION: Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.

    Matched MeSH terms: Genome, Plant*
  6. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, et al.
    BMC Genomics, 2014;15:984.
    PMID: 25407215 DOI: 10.1186/1471-2164-15-984
    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
    Matched MeSH terms: Genome, Plant
  7. Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LC, et al.
    BMC Genomics, 2014;15:309.
    PMID: 24767304 DOI: 10.1186/1471-2164-15-309
    Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.
    Matched MeSH terms: Genome, Plant
  8. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al.
    BMC Genomics, 2013;14:75.
    PMID: 23375136 DOI: 10.1186/1471-2164-14-75
    Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.
    Matched MeSH terms: Genome, Plant/genetics
  9. Teh CK, Lee HL, Abidin H, Ong AL, Mayes S, Chew FT, et al.
    BMC Plant Biol, 2019 Nov 05;19(1):470.
    PMID: 31690276 DOI: 10.1186/s12870-019-2062-x
    BACKGROUND: Legitimacy in breeding and commercial crop production depends on optimised protocols to ensure purity of crosses and correct field planting of material. In oil palm, the presence of three fruit forms permits these assumptions to be tested, although only after field planting. The presence of incorrect fruit forms in a cross is a clear sign of illegitimacy. Given that tenera forms produce 30% more oil for the same weight of fruit as dura, the presence of low levels of dura contamination can have major effect during the economic lifespan of an oil palm, which is around 25 years. We evaluated two methods for legitimacy test 1) The use of SHELL markers to the gene that determines the shell-thickness trait 2) The use of SNP markers, to determine the legitimacy of the cross.

    RESULTS: Our results indicate that the SHELL markers can theoretically reduce the major losses due to dura contamination of tenera planting material. However, these markers cannot distinguish illegitimate tenera, which reduces the value of having bred elite tenera for commercial planting and in the breeding programme, where fruit form is of limited utility, and incorrect identity could lead to significant problems. We propose an optimised approach using SNPs for routine quality control.

    CONCLUSIONS: Both dura and tenera contamination can be identified and removed at or before the nursery stage. An optimised legitimacy assay using SNP markers coupled with a suitable sampling scheme is now ready to be deployed as a standard control for seed production and breeding in oil palm. The same approach will also be an effective solution for other perennial crops, such as coconut and date palm.

    Matched MeSH terms: Genome, Plant*
  10. Keong BP, Harikrishna JA
    Biochem Genet, 2012 Feb;50(1-2):135-45.
    PMID: 22089543 DOI: 10.1007/s10528-011-9479-8
    A preliminary screening was conducted on BC3F1 and BC4F1 backcross families developed from crossing Oryza sativa (MR219) and O. rufipogon (IRGC105491). Despite earlier results showing that O. rufipogon alleles (wild introgression) contributed to both number of panicles (qPPL-2) and tillers (qTPL-2) at loci RM250, RM208, and RM48 in line A20 of the BC2F2 population, we observed that wild introgression was lost at loci RM250 and RM208 but retained at locus RM48 in BC3F1 and BC4F1. Progeny tests conducted utilizing genotype and phenotype data on both BC4F1 and a reference population, BC2F7 (A20 line), did not show significant differences between groups having the MR219 allele and wild introgression at locus RM48. This suggests that there is no additive and transgressive effect of wild introgression in the BC3F1 and BC4F1 generated. The presence of wild introgression was largely due to gene contamination by cross-pollination during field breeding practices.
    Matched MeSH terms: Genome, Plant
  11. Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, et al.
    Biol. Direct, 2017 Sep 08;12(1):21.
    PMID: 28886750 DOI: 10.1186/s13062-017-0191-4
    BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools.

    RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

    CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.

    REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

    Matched MeSH terms: Genome, Plant*
  12. Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, et al.
    Commun Biol, 2021 Oct 07;4(1):1166.
    PMID: 34620991 DOI: 10.1038/s42003-021-02682-1
    Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
    Matched MeSH terms: Genome, Plant*
  13. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
    Matched MeSH terms: Genome, Plant
  14. Mohd Sanusi NSN, Rosli R, Chan KL, Halim MAA, Ting NC, Singh R, et al.
    Comput Biol Chem, 2023 Feb;102:107801.
    PMID: 36528019 DOI: 10.1016/j.compbiolchem.2022.107801
    A high-quality reference genome is an important resource that can help decipher the genetic basis of traits in combination with linkage or association analyses. The publicly available oil palm draft genome sequence of AVROS pisifera (EG5) accounts for 1.535 Gb of the 1.8 Gb oil palm genome. However, the assemblies are fragmented, and the earlier assembly only had 43% of the sequences placed on pseudo-chromosomes. By integrating a number of SNP and SSR-based genetic maps, a consensus map (AM_EG5.1), comprising of 828.243 Mb genomic scaffolds anchored to 16 pseudo-chromosomes, was generated. This accounted for 54% of the genome assembly, which is a significant improvement to the original assembly. The total length of N50 scaffolds anchored to the pseudo-chromosomes increased by ∼18% compared to the previous assembly. A total of 139 quantitative trait loci for agronomically important quantitative traits, sourced from literature, were successfully mapped on the new pseudo-chromosomes. The improved assembly could also be used as a reference to identify potential errors in placement of specific markers in the linkage groups of the genetic maps used to assemble the consensus map. The 3422 unique markers from five genetic maps, anchored to the pseudo-chromosomes of AM_EG5.1, are an important resource that can be used preferentially to either construct new maps or fill gaps in existing genetic maps. Synteny analysis further revealed that the AM_EG5.1 had high collinearity with the date palm genome cultivar 'Barhee BC4' and shared most of its segmental duplications. This improved chromosomal-level genome is a valuable resource for genetic research in oil palm.
    Matched MeSH terms: Genome, Plant/genetics
  15. Nejat N, Rookes J, Mantri NL, Cahill DM
    Crit Rev Biotechnol, 2017 Mar;37(2):229-237.
    PMID: 26796880 DOI: 10.3109/07388551.2015.1134437
    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
    Matched MeSH terms: Genome, Plant
  16. Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, et al.
    Curr Biol, 2021 03 08;31(5):1002-1011.e9.
    PMID: 33485466 DOI: 10.1016/j.cub.2020.12.045
    Despite more than 2,000-fold variation in genome size, key features of genome architecture are largely conserved across angiosperms. Parasitic plants have elucidated the many ways in which genomes can be modified, yet we still lack comprehensive genome data for species that represent the most extreme form of parasitism. Here, we present the highly modified genome of the iconic endophytic parasite Sapria himalayana Griff. (Rafflesiaceae), which lacks a typical plant body. First, 44% of the genes conserved in eurosids are lost in Sapria, dwarfing previously reported levels of gene loss in vascular plants. These losses demonstrate remarkable functional convergence with other parasitic plants, suggesting a common genetic roadmap underlying the evolution of plant parasitism. Second, we identified extreme disparity in intron size among retained genes. This includes a category of genes with introns longer than any so far observed in angiosperms, nearing 100 kb in some cases, and a second category of genes with exceptionally short or absent introns. Finally, at least 1.2% of the Sapria genome, including both genic and intergenic content, is inferred to be derived from host-to-parasite horizontal gene transfers (HGTs) and includes genes potentially adaptive for parasitism. Focused phylogenomic reconstruction of HGTs reveals a hidden history of former host-parasite associations involving close relatives of Sapria's modern hosts in the grapevine family. Our findings offer a unique perspective into how deeply angiosperm genomes can be altered to fit an extreme form of plant parasitism and demonstrate the value of HGTs as DNA fossils to investigate extinct symbioses.
    Matched MeSH terms: Genome, Plant/genetics*
  17. Sablok G, Pérez-Pulido AJ, Do T, Seong TY, Casimiro-Soriguer CS, La Porta N, et al.
    Front Plant Sci, 2016;7:878.
    PMID: 27446111 DOI: 10.3389/fpls.2016.00878
    Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr.
    Matched MeSH terms: Genome, Plant
  18. Song BK, Hein I, Druka A, Waugh R, Marshall D, Nadarajah K, et al.
    Funct Integr Genomics, 2009 Feb;9(1):97-108.
    PMID: 18633654 DOI: 10.1007/s10142-008-0091-x
    Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.
    Matched MeSH terms: Genome, Plant/genetics*
  19. Mohd-Yusoff NF, Ruperao P, Tomoyoshi NE, Edwards D, Gresshoff PM, Biswas B, et al.
    G3 (Bethesda), 2015 Apr;5(4):559-67.
    PMID: 25660167 DOI: 10.1534/g3.114.014571
    Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm.
    Matched MeSH terms: Genome, Plant*
  20. Cui Y, Song BK, Li LF, Li YL, Huang Z, Caicedo AL, et al.
    G3 (Bethesda), 2016 Dec 07;6(12):4105-4114.
    PMID: 27729434 DOI: 10.1534/g3.116.035881
    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran) color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations.
    Matched MeSH terms: Genome, Plant
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links