Displaying publications 1 - 20 of 373 in total

Abstract:
Sort:
  1. Ismail NZ, Arsad H, Samian MR, Hamdan MR, Othman AS
    3 Biotech, 2018 Jan;8(1):62.
    PMID: 29354373 DOI: 10.1007/s13205-018-1092-7
    This study was conducted to determine the feasibility of using three plastid DNA regions (matK, trnH-psbA, and rbcL) as DNA barcodes to identify the medicinal plant Clinacanthus nutans. In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK, trnH-psbA, and rbcL, primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH-psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH-psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH-psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH-psbA is very effective at identifying C. nutans, as it performed well in discriminating species in Acanthaceae.
    Matched MeSH terms: Genomics
  2. Han Z, Sun J, Lv A, Sung Y, Sun X, Shi H, et al.
    AMB Express, 2018 Apr 02;8(1):52.
    PMID: 29610998 DOI: 10.1186/s13568-018-0578-3
    A modified genomic DNA extraction method named the combination of lysozyme and ultrasonic lysis (CLU) method was used to analyze the fish intestinal microflora. In this method, the physical disruption and chemical lysis steps were combined, and some parameters in the key steps were adjusted. In addition, the results obtained by this method were compared with the results obtained by the Zirmil-beating cell disruption method and the QIAamp Fast DNA Stool Mini Kit. The OD260/OD280ratio and concentration of the DNA extracted using the CLU method were 2.02 and 282.8 µg/µL, respectively; when the incubation temperatures for lysozyme and RNase were adjusted to 37 °C, those values were 2.08 and 309.8 µg/µL, respectively. On the agarose gel, a major high-intensity, discrete band of more than 10 kb was found for the CLU method. However, the smearing intensity of degraded DNA was lower when the incubation temperatures were 60 °C for lysozyme and 30 °C for RNase than when incubation temperatures of 37 °C for lysozyme and 37 °C for RNase were used. The V3 variable region of the prokaryotic 16S rDNA was amplified, and an approximately 600-bp fragment was observed when the DNA extracted using the CLU method was used as a template. The CLU method is simple and cost effective, and it yields high-quality, unsheared, high-molecular-weight DNA, which is comparable to that obtained with a commercially available kit. The extracted DNA has potential for applications in critical molecular biology techniques.
    Matched MeSH terms: Genomics
  3. Tay ST, Kho KL, Wee WY, Choo SW
    Acta Trop, 2016 Mar;155:25-33.
    PMID: 26658020 DOI: 10.1016/j.actatropica.2015.11.019
    Bartonella elizabethae has been known to cause endocarditis and neuroretinitis in humans. The genomic features and virulence profiles of a B. elizabethae strain (designated as BeUM) isolated from the spleen of a wild rat in Kuala Lumpur, Malaysia are described in this study. The BeUM strain has a genome size of 1,932,479bp and GC content of 38.3%. There is a high degree of conservation between the genomes of strain BeUM with B. elizabethae type strains (ATCC 49927 and F9251) and a rat-borne strain, Re6043vi. Of 2137 gene clusters identified from B. elizabethae strains, 2064 (96.6%) are indicated as the core gene clusters. Comparative genome analysis of B. elizabethae strains reveals virulence genes which are known in other pathogenic Bartonella species, including VirB2-11, vbhB2-B11, VirD4, trw, vapA2-5, hbpA-E, bepA-F, bepH, badA/vomp/brp, ialB, omp43/89 and korA-B. A putative intact prophage has been identified in the strain BeUM, in addition to a 8kb pathogenicity island. The whole genome analysis supports the zoonotic potential of the rodent-borne B. elizabethae, and provides basis for future functional and pathogenicity studies of B. elizabethae.
    Matched MeSH terms: Genomics
  4. Goh HH, Ng CL, Loke KK
    Adv Exp Med Biol, 2018 11 2;1102:11-30.
    PMID: 30382566 DOI: 10.1007/978-3-319-98758-3_2
    Functional genomics encompasses diverse disciplines in molecular biology and bioinformatics to comprehend the blueprint, regulation, and expression of genetic elements that define the physiology of an organism. The deluge of sequencing data in the postgenomics era has demanded the involvement of computer scientists and mathematicians to create algorithms, analytical software, and databases for the storage, curation, and analysis of biological big data. In this chapter, we discuss on the concept of functional genomics in the context of systems biology and provide examples of its application in human genetic disease studies, molecular crop improvement, and metagenomics for antibiotic discovery. An overview of transcriptomics workflow and experimental considerations is also introduced. Lastly, we present an in-house case study of transcriptomics analysis of an aromatic herbal plant to understand the effect of elicitation on the biosynthesis of volatile organic compounds.
    Matched MeSH terms: Genomics/trends*; Metagenomics
  5. Aizat WM, Ismail I, Noor NM
    Adv Exp Med Biol, 2018 11 2;1102:1-9.
    PMID: 30382565 DOI: 10.1007/978-3-319-98758-3_1
    The central dogma of molecular biology (DNA, RNA, protein and metabolite) has engraved our understanding of genetics in all living organisms. While the concept has been embraced for many decades, the development of high-throughput technologies particularly omics (genomics, transcriptomics, proteomics and metabolomics) has revolutionised the field to incorporate big data analysis including bioinformatics and systems biology as well as synthetic biology area. These omics approaches as well as systems and synthetic biology areas are now increasingly popular as seen by the growing numbers of publication throughout the years. Several journals which have published most of these related fields are also listed in this chapter to overview their impact and target journals.
    Matched MeSH terms: Genomics/trends*
  6. Ramzi AB
    Adv Exp Med Biol, 2018 11 2;1102:81-95.
    PMID: 30382570 DOI: 10.1007/978-3-319-98758-3_6
    In the modern era of next-generation genomics and Fourth Industrial Revolution, there is a growing demand for translational research that brings about not only impactful research but also potential commercialisation of R- and D-based products. Advancement of metabolic engineering and synthetic biology has put forward a viable and innovative biotechnological platform for bioproduct development especially using microbial chassis. In this chapter, readers will be introduced on the concepts of metabolic engineering, synthetic biology and microbial chassis and the applications of these biological engineering (BioE) components in the advancement of industrial and agricultural biotechnology. Main strategies in employing BioE platform are discussed especially for waste bioconversion and value-added product development. More importantly, this chapter will also discuss current endeavours in integrating systems and synthetic biology for microbial production of natural products by introducing flavonoid biosynthesis genes of Polygonum minus, a medicinally important tropical plant in engineered yeast.
    Matched MeSH terms: Genomics
  7. Kathiresan N, Selvaraj C, Pandian S, Subbaraj GK, Alothaim AS, Safi SZ, et al.
    Adv Protein Chem Struct Biol, 2024;138:275-300.
    PMID: 38220428 DOI: 10.1016/bs.apcsb.2023.06.001
    Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.
    Matched MeSH terms: Genomics
  8. Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, et al.
    Am J Med Genet A, 2023 Aug;191(8):2113-2131.
    PMID: 37377026 DOI: 10.1002/ajmg.a.63247
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
    Matched MeSH terms: Genomics
  9. Nurul Najian AB, Engku Nur Syafirah EA, Ismail N, Mohamed M, Yean CY
    Anal Chim Acta, 2016 Jan 15;903:142-8.
    PMID: 26709307 DOI: 10.1016/j.aca.2015.11.015
    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.
    Matched MeSH terms: Genomics
  10. Lind CE, Kilian A, Benzie JAH
    Anim. Genet., 2017 Jun;48(3):362-364.
    PMID: 28094451 DOI: 10.1111/age.12536
    The development of genomic markers is described for Nile tilapia, Oreochromis niloticus, using the Diversity Arrays Technology (DArT) genotype-by-sequencing platform. A total of 13 215 single nucleotide polymorphism (SNP) markers and 12 490 silicoDArT (dominant) markers were identified from broodstock of two selective breeding programs [Genetically Improved Farmed Tilapia (GIFT) strain from Malaysia and the Abbassa strain from Egypt]. Over 10 000 SNPs were polymorphic in either strain, and 2985 and 3087 showed strain-specific polymorphisms for the GIFT and Abbassa strains respectively. We demonstrate the potential utility of these markers for rapid genomic screening and use in breeding programs.
    Matched MeSH terms: Genomics
  11. Osman NA, Abdul-Latiff MAB, Mohd-Ridwan AR, Yaakop S, Nor SM, Md-Zain BM
    Animals (Basel), 2020 Nov 26;10(12).
    PMID: 33255964 DOI: 10.3390/ani10122215
    Understanding dietary diversity is a fundamental task in the study of stump-tailed macaque, Macaca arctoides in its natural habitat. However, direct feeding observation and morphological identification using fecal samples are not effective and nearly impossible to obtain in natural habitats because this species is sensitive to human presence. As ecological methods are challenging and time-consuming, DNA metabarcoding offers a more powerful assessment of the diet. We used a chloroplast tRNL DNA metabarcoding approach to identify the diversity of plants consumed by free-ranging M. arctoides in the Malaysia-Thailand border region located in Perlis State Park, Peninsular Malaysia. DNA was extracted from three fecal samples, and chloroplast tRNL DNA was amplified and sequenced using the Illumina MiniSeq platform. Sequences were analyzed using the CLC Genomic Workbench software. A total of 145 plant species from 46 families were successfully identified as being consumed by M. arctoides. The most abundant species were yellow saraca, Saraca thaipingensis (11.70%), common fig, Ficus carica (9.33%), aramata, Clathrotropis brachypetala (5.90%), sea fig, Ficus superba (5.44%), and envireira, Malmea dielsiana (1.70%). However, Clathrotropis and Malmea are not considered Malaysian trees because of limited data available from Malaysian plant DNA. Our study is the first to identify plant taxa up to the species level consumed by stump-tailed macaques based on a DNA metabarcoding approach. This result provides an important understanding on diet of wild M. arctoides that only reside in Perlis State Park, Malaysia.
    Matched MeSH terms: Genomics
  12. Khairuldin AM, Ibrahim IK, Wakiyuddin SB, Z, Wenning, AO, Lesley, SJ, Nicholas, et al.
    Ann Dent, 2014;21(2):17-26.
    MyJurnal
    The gram-positive, mesophilic and non-motile coccus Streptococcus gordonii is an important causative agent of infective endocarditis (IE). This pioneer species of dental plaque also causes bacteraemia in immune-supressed patients. In this study, we analysed the genome of a representative strain, Streptococcus gordonii SK12 that was originally isolated from the oral cavity. To gain a better understanding of the biology, virulence and phylogeny, of this potentially pathogenic organism, high-throughput Illumina HiSeq technology and different bioinformatics approaches were performed. Genome assembly of SK12 was performed using CLC Genomic Workbench 5.1.5 while RAST annotation revealed the key genomic features. The assembled draft genome of Streptococcus gordonii SK12 consists of 27 contigs, with a genome size of 2,145,851 bp and a G+C content of 40.63%. Phylogenetic inferences have confirmed that SK12 is closely related to the widely studied strain Streptococcus gordonii Challis. Interestingly, we predicted 118 potential virulence genes in SK12 genome which may contribute to bacterial pathogenicity in infective endocarditis. We also discovered an intact prophage which might be recently integrated into the SK12 genome. Examination of genes present in genomic islands revealed that this oral strain
    might has potential to acquire new phenotypes/traits including strong defence system, bacitracin
    resistance and collateral detergent sensitivity. This detailed analysis of S. gordonii SK12 further improves our understanding of the genetic make-up of S. gordonii as a whole and may help to elucidate how this species is able to transition between living as an oral commensal and potentially causing the lifethreatening condition infective endocarditis.
    Matched MeSH terms: Genomics
  13. Martinez J, Ross PA, Gu X, Ant TH, Murdochy SM, Tong L, et al.
    Appl Environ Microbiol, 2022 Nov 22;88(22):e0141222.
    PMID: 36318064 DOI: 10.1128/aem.01412-22
    The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
    Matched MeSH terms: Genomics
  14. Rasool S, Ahmad P, Rehman MU, Arif A, Anjum NA
    Appl Biochem Biotechnol, 2015 Dec;177(7):1395-408.
    PMID: 26440315 DOI: 10.1007/s12010-015-1830-9
    The inexorable exposure of plants to the combinations of abiotic stresses has affected the worldwide food supply. The crop improvement against these abiotic stresses has been captivating approach to increase the yield and enhance the stress tolerance. By using traditional and modern breeding methods, the characters that confer tolerance to these stresses were accomplished. No doubt genetic engineering and molecular breeding have helped in comprehending the intricate nature of stress response. Understanding of abiotic stress-involved cellular pathways provides vital information on such responses. On the other hand, genomic research for crop improvement has raised new assessments in breeding new varieties against abiotic stresses. Interpretation of responses of the crop plants under stress is of great significance by studying the main role of crops in food and biofuel production. This review presents genomic-based approaches revealing the complex networks controlling the mechanisms of abiotic stress tolerance, and the possible modes of assimilating information attained by genomic-based approaches due to the advancement in isolation and functional analysis of genes controlling the yield and abiotic stress tolerance are discussed.
    Matched MeSH terms: Genomics
  15. Swamy MK, Sinniah UR, Ghasemzadeh A
    Appl Microbiol Biotechnol, 2018 Sep;102(18):7775-7793.
    PMID: 30022261 DOI: 10.1007/s00253-018-9223-y
    Rosmarinic acid (RA) is a highly valued natural phenolic compound that is very commonly found in plants of the families Lamiaceae and Boraginaceae, including Coleus blumei, Heliotropium foertherianum, Rosmarinus officinalis, Perilla frutescens, and Salvia officinalis. RA is also found in other members of higher plant families and in some fern and horned liverwort species. The biosynthesis of RA is catalyzed by the enzymes phenylalanine ammonia lyase and cytochrome P450-dependent hydroxylase using the amino acids tyrosine and phenylalanine. Chemically, RA can be produced via methods involving the esterification of 3,4-dihydroxyphenyllactic acid and caffeic acid. Some of the derivatives of RA include melitric acid, salvianolic acid, lithospermic acid, and yunnaneic acid. In plants, RA is known to have growth-promoting and defensive roles. Studies have elucidated the varied pharmacological potential of RA and its derived molecules, including anticancer, antiangiogenic, anti-inflammatory, antioxidant, and antimicrobial activities. The demand for RA is therefore, very high in the pharmaceutical industry, but this demand cannot be met by plants alone because RA content in plant organs is very low. Further, many plants that synthesize RA are under threat and near extinction owing to biodiversity loss caused by unscientific harvesting, over-collection, environmental changes, and other inherent features. Moreover, the chemical synthesis of RA is complicated and expensive. Alternative approaches using biotechnological methodologies could overcome these problems. This review provides the state of the art information on the chemistry, sources, and biosynthetic pathways of RA, as well as its anticancer properties against different cancer types. Biotechnological methods are also discussed for producing RA using plant cell, tissue, and organ cultures and hairy-root cultures using flasks and bioreactors. The recent developments and applications of the functional genomics approach and heterologous production of RA in microbes are also highlighted. This chapter will be of benefit to readers aiming to design studies on RA and its applicability as an anticancer agent.
    Matched MeSH terms: Genomics
  16. Tajuddin S, Khan AM, Chong LC, Wong CL, Tan JS, Ina-Salwany MY, et al.
    Appl Microbiol Biotechnol, 2023 Feb;107(2-3):749-768.
    PMID: 36520169 DOI: 10.1007/s00253-022-12312-3
    Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
    Matched MeSH terms: Genomics
  17. Muhammadazril Mohd Saad, Nur Amin Abd Rahman, Khairani Idah Mokhtar, Noraini Abu Bakar, Azrul Fazwan Kharuddin, Wan Rohani Wan Taib
    MyJurnal
    Polymorphism in PAX9 (rs8004560), a gene responsible for craniofacial and tooth development, is often associated with Class II/Div2 malocclusion. This study aimed to detect the presence of PAX9 SNP (rs8004560) and to determine its genotype and allele distribution in Class II skeletal base malocclusion, contributed by retrognathic mandible, in the local Malaysian population. The association of PAX9 SNP (rs8004560) with Class II skeletal base malocclusion was also determined. A case control study was performed on 30 samples; 15 from Class II skeletal base malocclusion, and 15 from Class I skeletal base subject as control. Cephalometric measurements were performed prior to saliva samples collection. Genomic DNA was extracted from unstimulated saliva of all subjects, and the DNA was amplified using specific primers for marker rs8004560, followed by genotyping by sequencing. SHEsis online software was used to analyse Hardy-Weinberg Equilibrium (HWE) for cases and controls. Allelic and genotypic frequencies were compared between cases and controls. Significant difference in allele frequency was observed within the group whereby G allele was over-represented in the analysed population (p0.05). Although no genetic association between PAX9 SNP (rs8004560) with Class II skeletal base malocclusion was observed, significant difference in allele frequency observed might provide some indication in the involvement of PAX9 polymorphism in Class II skeletal base malocclusion contributed by retrognathic mandible. Further research utilising larger sample size will be required in order to determine the role of PAX9 gene in the aetiology of Class II skeletal base malocclusion observed in the local Malaysian population.
    Matched MeSH terms: Genomics
  18. Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL
    Avian Pathol, 1996 Dec;25(4):837-44.
    PMID: 18645902
    The nucleotide sequence of the haemagglutinin-neuraminidase (HN) glycoprotein gene of Newcastle disease virus (NDV) variant strain V4(UPM) was determined by direct genomic RNA sequencing and confirmed by cycle sequencing. The gene comprises 1996 nucleotides encoding a 615 amino acid protein of size 67.4 kDa. The nucleotide and amino acid sequences of this strain were compared with those of the parent strain V4(QUE). There are 16 nucleotide substitutions on V4(UPM), eight of which are silent mutations and another eliminated a potential Asn-linked glycosylation site in V4(UPM). In addition, an Arg (403) residue was shown to be absent in the variant strain. This deletion is thought to be significant because of its location in a highly conserved region of the HN protein.
    Matched MeSH terms: Genomics
  19. Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW
    BMC Bioinformatics, 2011;12 Suppl 13:S1.
    PMID: 22372736 DOI: 10.1186/1471-2105-12-S13-S1
    The 2011 International Conference on Bioinformatics (InCoB) conference, which is the annual scientific conference of the Asia-Pacific Bioinformatics Network (APBioNet), is hosted by Kuala Lumpur, Malaysia, is co-organized with the first ISCB-Asia conference of the International Society for Computational Biology (ISCB). InCoB and the sequencing of the human genome are both celebrating their tenth anniversaries and InCoB's goalposts for the next decade, implementing standards in bioinformatics and globally distributed computational networks, will be discussed and adopted at this conference. Of the 49 manuscripts (selected from 104 submissions) accepted to BMC Genomics and BMC Bioinformatics conference supplements, 24 are featured in this issue, covering software tools, genome/proteome analysis, systems biology (networks, pathways, bioimaging) and drug discovery and design.
    Matched MeSH terms: Genomics*
  20. Ranganathan S, Hsu WL, Yang UC, Tan TW
    BMC Bioinformatics, 2008;9 Suppl 12:S1.
    PMID: 19091008 DOI: 10.1186/1471-2105-9-S12-S1
    The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20-23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts.
    Matched MeSH terms: Genomics/organization & administration
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links