Displaying publications 1 - 20 of 373 in total

Abstract:
Sort:
  1. Teoh SB
    Theor Appl Genet, 1982 Mar;61(1):91-5.
    PMID: 24271380 DOI: 10.1007/BF00261517
    Four out of 10 diploid orchid species showed "complement fractionation" a complex cytological phenomenon, hitherto reported only in polyploid plants. The manifestation of this phenomenon during meiosis is the formation of chromosome subgroups resulting eventually in cells with more than the usual four sporads; five or six being the optimum number in the investigated orchid species. No implications whatsoever can be deduced as to the genetic or genomic constitution of the end products. The presence of the phenomenon in these orchid species could perhaps indicate a polyploid ancestry or concealed hybridity. The operation of "complement fractionation", however, could be interpreted as an alternative evolutionary pathway opposed to polyploidy.
    Matched MeSH terms: Genomics
  2. Yusoff K, Tan WS, Lau CH, Ng BK, Ibrahim AL
    Avian Pathol, 1996 Dec;25(4):837-44.
    PMID: 18645902
    The nucleotide sequence of the haemagglutinin-neuraminidase (HN) glycoprotein gene of Newcastle disease virus (NDV) variant strain V4(UPM) was determined by direct genomic RNA sequencing and confirmed by cycle sequencing. The gene comprises 1996 nucleotides encoding a 615 amino acid protein of size 67.4 kDa. The nucleotide and amino acid sequences of this strain were compared with those of the parent strain V4(QUE). There are 16 nucleotide substitutions on V4(UPM), eight of which are silent mutations and another eliminated a potential Asn-linked glycosylation site in V4(UPM). In addition, an Arg (403) residue was shown to be absent in the variant strain. This deletion is thought to be significant because of its location in a highly conserved region of the HN protein.
    Matched MeSH terms: Genomics
  3. Sulong S, Yusoff AA, Zainuddin N, Abdullah JM, Pannatil JG, Jaafar H, et al.
    Malays J Med Sci, 2004 Jan;11(1):37-43.
    PMID: 22977358 MyJurnal
    The new millennium has been regarded as a genomic era. A lot of researchers and pathologists are beginning to understand the scientific basis of molecular genetics and relates with the progression of the diseases. Central nervous system (CNS) tumours are among the most rapidly fatal of all cancers. It has been proposed that the progression of malignant tumours may result from multi-step of genetic alterations, including activation of oncogenes, inactivation of tumour suppressor genes and also the presence of certain molecular marker such as telomerase activity. In this paper, we review some recent data from the literature, including our own studies, on the molecular genetics analysis in CNS tumours. Our studies have shown that two types of tumour suppressor genes, p53 and PTEN were involved in the development of these tumours but not in p16 gene among the patients from Hospital Universiti Sains Malaysia (HUSM). Telomerase activity also has been detected in various types of CNS tumours. Thus, it is important to assemble all data which related to this study and may provide as a vital information in a new approach to neuro-oncology studies in Malaysia.
    Matched MeSH terms: Genomics
  4. Aida AA, Che Man YB, Wong CM, Raha AR, Son R
    Meat Sci, 2005 Jan;69(1):47-52.
    PMID: 22062638 DOI: 10.1016/j.meatsci.2004.06.020
    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.
    Matched MeSH terms: Genomics
  5. Bhalla R, Narasimhan K, Swarup S
    Plant Cell Rep, 2005 Dec;24(10):562-71.
    PMID: 16220342
    A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics.
    Matched MeSH terms: Genomics/methods; Genomics/trends*
  6. Abdullah B
    Biomed Imaging Interv J, 2006 Oct;2(4):e28.
    PMID: 21614327 MyJurnal DOI: 10.2349/biij.2.4.e28
    Predicting the future is a dangerous undertaking at best, and not meant for the faint-hearted. However, viewing the advances in molecular medicine, genomics and proteomics, it is easy to comprehend those who believe that molecular imaging methods will open up new vistas for medical imaging. The knock on effect will impact our capacity to diagnose and treat diseases. Anatomically detectable abnormalities, which have historically been the basis of the practice of radiology, will soon be replaced by molecular imaging methods that will reflect the under expression or over expression of certain genes which occur in almost every disease. Molecular imaging can then be resorted to so that early diagnosis and characterisation of disease can offer improved specificity. Given the growing importance of molecular medicine, imagers will find it profitable to educate themselves on molecular targeting, molecular therapeutics and the role of imaging in both areas.
    Matched MeSH terms: Genomics
  7. Chong CE, Lim BS, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2006;6(4):341-6.
    PMID: 16922696
    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.
    Matched MeSH terms: Genomics/statistics & numerical data
  8. Norlia B., Norwati M., Norwati A., Mohd Rosli H., Norihan M. S.
    MyJurnal
    This study was part of the larger studies to isolate and characterize gene related to flowering in teak. This study isolated differentially expressed genes of teak flowering tissues. One of the genes encodes plant protein kinases highly homologous to the AtSK-II of Arabidopsis GSK3/SHAGGY subfamily. The gene was named as Tectona grandis SHAGGY kinase (Tg-SK). The protein sequence of this gene contained the characteristic catalytic domain of GSK-3/SHAGGY protein kinase. The gene also shows the same genomic organization of 11 introns and 12 exons. Although the size of the introns varies, the positions of exon/intron boundaries are very similar to AtSK-II. The discovery of this gene in teak, which is a forest tree species, supports the hypothesis, which suggested the gene is found in all eukaryotes.
    Matched MeSH terms: Genomics
  9. Sharifah, S .H., Suriani, M. N., Hassuzana, K., Aini, I.
    MyJurnal
    Malaysia, experienced two epidemic waves of HPAI; its fi rst outbreak of HP H5N1 in August 2004 that occurred in the state of Kelantan and the second and subsequent outbreaks in February–March 2006 in three states on the west coast of Malaysia namely Wilayah Persekutuan
    Kuala Lumpur, Perak and Penang. Five outbreaks occurred in village chickens and one in a multi-species enclosure of birds in a bird park resort facility. Molecular epidemiological studies by genomic sequencing and phylogenetic analyses of the viruses isolated showed that the
    virus isolated from WP Kuala Lumpur is of the V-genotype and it originated from Hunan China, two viruses were found to be similar to the Fujian/Hunan strains and other viruses were similar to the Vietnam/ Thailand strains.
    Matched MeSH terms: Genomics
  10. Momynaliev K, Klubin A, Chelysheva V, Selezneva O, Akopian T, Govorun V
    Res. Microbiol., 2007 May;158(4):371-8.
    PMID: 17363224
    Ureaplasma parvum colonizes human mucosal surfaces, primarily in the respiratory and urogenital tracts, causing a wide spectrum of diseases, from non-gonococcal urethritis to pneumonitis in immunocompromised hosts. Although the basis for these diverse clinical outcomes is not yet understood, more severe disease may be associated with strains harboring a certain set of strain-specific genes. To investigate this, whole genome DNA macroarrays were constructed and used to assess genomic diversity in 10 U. parvum clinical strains. We found that 7.6% of U. parvum genes were dispersed into one or more strains, thus defining a minimal functional core of 538 U. parvum genes. Most of the strain-specific genes (79%) were of unknown function and were unique to U. parvum. Four hypervariable plasticity regions were identified in the genome containing 93% of the variability in the gene pool (UU32-UU33, UU145-UU170, UU440-UU447 and UU527-UU529). We hypothesized that one of them (UU145-UU170) was a pathogenicity island in U. parvum and we characterized it. Thus, we propose that the clinical outcome of U. parvum infection is probably associated with this newly identified pathogenicity island.
    Matched MeSH terms: Genomics*; Genomic Islands/genetics
  11. Ranganathan S, Hsu WL, Yang UC, Tan TW
    BMC Bioinformatics, 2008;9 Suppl 12:S1.
    PMID: 19091008 DOI: 10.1186/1471-2105-9-S12-S1
    The 2008 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998, was organized as the 7th International Conference on Bioinformatics (InCoB), jointly with the Bioinformatics and Systems Biology in Taiwan (BIT 2008) Conference, Oct. 20-23, 2008 at Taipei, Taiwan. Besides bringing together scientists from the field of bioinformatics in this region, InCoB is actively involving researchers from the area of systems biology, to facilitate greater synergy between these two groups. Marking the 10th Anniversary of APBioNet, this InCoB 2008 meeting followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India) and Hong Kong. Additionally, tutorials and the Workshop on Education in Bioinformatics and Computational Biology (WEBCB) immediately prior to the 20th Federation of Asian and Oceanian Biochemists and Molecular Biologists (FAOBMB) Taipei Conference provided ample opportunity for inducting mainstream biochemists and molecular biologists from the region into a greater level of awareness of the importance of bioinformatics in their craft. In this editorial, we provide a brief overview of the peer-reviewed manuscripts accepted for publication herein, grouped into thematic areas. As the regional research expertise in bioinformatics matures, the papers fall into thematic areas, illustrating the specific contributions made by APBioNet to global bioinformatics efforts.
    Matched MeSH terms: Genomics/organization & administration
  12. Ranganathan S, Gribskov M, Tan TW
    BMC Bioinformatics, 2008;9 Suppl 1:S1.
    PMID: 18315840 DOI: 10.1186/1471-2105-9-S1-S1
    We provide a 2007 update on the bioinformatics research in the Asia-Pacific from the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation set up in 1998. From 2002, APBioNet has organized the first International Conference on Bioinformatics (InCoB) bringing together scientists working in the field of bioinformatics in the region. This year, the InCoB2007 Conference was organized as the 6th annual conference of the Asia-Pacific Bioinformatics Network, on Aug. 27-30, 2007 at Hong Kong, following a series of successful events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea) and New Delhi (India). Besides a scientific meeting at Hong Kong, satellite events organized are a pre-conference training workshop at Hanoi, Vietnam and a post-conference workshop at Nansha, China. This Introduction provides a brief overview of the peer-reviewed manuscripts accepted for publication in this Supplement. We have organized the papers into thematic areas, highlighting the growing contribution of research excellence from this region, to global bioinformatics endeavours.
    Matched MeSH terms: Genomics/trends*
  13. Rodrigues, K. F.
    MyJurnal
    Molecular techniques involving the application of DNA based molecular markers for the conservation and management of endemic and endangered species have assumed significance as
    genome sequencing projects have generated an extensive database which can be mined for informative genomic regions. Scientific approaches towards conservation involve several stages, which encompass determination of appropriate genomic regions for characterization, design and testing of specific molecular markers, screening of multiple populations and statistical treatment and
    interpretation of data. Population data can be utilized to develop controlled breeding and relocation programs aimed at ensuring that genetic diversity within populations of endangered species is
    sustained within the context of an overall conservation program. The information derived as a result of this approach can be applied to establish a scientific and legal framework for the conservation of endemic species. Species specific genomic markers can be applied to enforce the implementation of CITES within the guidelines of a national biodiversity conservation policy.
    Matched MeSH terms: Genomics
  14. Ong, Chin-Eng, Yan, Pan, Tiong, Kai-Hung, Yiap, Beow-Chin, Tan, Eng-Lai, Pook, Peter, et al.
    MyJurnal
    Pharmacogenomics (or pharmacogenetics), the study of the effects of genetic differences on a person’s response to drugs, can help in optimizing drug efficacy and minimizing adverse drug reactions. Interperson difference in drug metabolism is one of the important consequences of such genetic variation. This variation is determined in part by mutations in cytochrome P450 enzymes (CYPs). IMU is part of a major collaborative research project in the area of phamacogenetics and drug metabolism. Working together with USM and UiTM, our group has, since 2000, generated useful population database on genetic polymorphism of various CYP isoforms. We have successfully genotyped three major ethnic groups, Malay, Indian and Chinese for their allelic frequency of important isoforms. These include CYP2D6, CYP2C9, CYP2C8 and CYP2A6. Data generated so far collectively have contributed to our effort in mapping and constructing genomic database for Malaysian population.
    Since early 2002, our research has been focusing on developing in vitro methods in studying the functional consequences of genetic polymorphism of CYP enzymes. Using site-directed mutagenesis, CYP mutants, carrying nucleotide changes as reported in known alleles in human populations, were generated and expressed in E. coli system, and the expressed recombinant proteins were characterized using enzyme assays to determine the functional consequences of mutations. We have established a series of HPLC (high performance liquid chromatography)-based and fluorescence-based assays to investigate CYP activities. Assays that have been developed include tolbutamide methylhydroxylase, paclitaxel 6α-hydroxylase, dextromethorphan O-demethylation, testosterone 6β-hydroxylation and coumarin 7-hydroxylase assays. These assays serve as activity markers allowing comparison of catalytic activities of mutant proteins generated. Another focus of our work is to use the developed assays as a screening tool to investigate drug-herb interactions. This was achieved by co-incubation of herbal extracts and active constituents with the probe substrates in the assays followed by characterization of the kinetic behaviors of the enzymes involved using various pharmacokinetic parameters such as Km, Vmax, IC50 and Ki. This work is currently carried out with collaboration from the Institute for Medical Research (IMR) and is supported by MOSTI’s eScienceFund under RM9. It is envisaged that this screening work will give us insights on the potential of the commonly used herbs to cause pharmacokinetic interactions with other drug substrates, and allow us to elucidate the mechanisms involved in the interactions.
    Matched MeSH terms: Genomics
  15. Kannan TP, Zilfalil BA
    Malays J Med Sci, 2009 Apr;16(2):4-9.
    PMID: 22589651 MyJurnal
    Fifty years have elapsed since the discovery of the number of human chromosomes in 1956. Newer techniques have been developed since then, ranging from the initial conventional banding techniques to the currently used molecular array comparative genomic hybridisation. With a combination of these conventional and molecular techniques, cytogenetics has become an indispensable tool for the diagnosis of various genetic disorders, paving the way for possible treatment and management. This paper traces the history and evolution of cytogenetics leading up to the current state of technology.
    Matched MeSH terms: Genomics
  16. Zeti AM, Shamsir MS, Tajul-Arifin K, Merican AF, Mohamed R, Nathan S, et al.
    PLoS Comput Biol, 2009 Aug;5(8):e1000457.
    PMID: 19714208 DOI: 10.1371/journal.pcbi.1000457
    Matched MeSH terms: Genomics/trends
  17. Teo YY, Sim X, Ong RT, Tan AK, Chen J, Tantoso E, et al.
    Genome Res, 2009 Nov;19(11):2154-62.
    PMID: 19700652 DOI: 10.1101/gr.095000.109
    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
    Matched MeSH terms: Genomics/methods
  18. Ranganathan S, Eisenhaber F, Tong JC, Tan TW
    BMC Genomics, 2009;10 Suppl 3:S1.
    PMID: 19958472 DOI: 10.1186/1471-2164-10-S3-S1
    The 2009 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation dating back to 1998, was organized as the 8th International Conference on Bioinformatics (InCoB), Sept. 7-11, 2009 at Biopolis, Singapore. Besides bringing together scientists from the field of bioinformatics in this region, InCoB has actively engaged clinicians and researchers from the area of systems biology, to facilitate greater synergy between these two groups. InCoB2009 followed on from a series of successful annual events in Bangkok (Thailand), Penang (Malaysia), Auckland (New Zealand), Busan (South Korea), New Delhi (India), Hong Kong and Taipei (Taiwan), with InCoB2010 scheduled to be held in Tokyo, Japan, Sept. 26-28, 2010. The Workshop on Education in Bioinformatics and Computational Biology (WEBCB) and symposia on Clinical Bioinformatics (CBAS), the Singapore Symposium on Computational Biology (SYMBIO) and training tutorials were scheduled prior to the scientific meeting, and provided ample opportunity for in-depth learning and special interest meetings for educators, clinicians and students. We provide a brief overview of the peer-reviewed bioinformatics manuscripts accepted for publication in this supplement, grouped into thematic areas. In order to facilitate scientific reproducibility and accountability, we have, for the first time, introduced minimum information criteria for our pubilcations, including compliance to a Minimum Information about a Bioinformatics Investigation (MIABi). As the regional research expertise in bioinformatics matures, we have delineated a minimum set of bioinformatics skills required for addressing the computational challenges of the "-omics" era.
    Matched MeSH terms: Genomics*
  19. Jasbeer, K., Son, R., Mohamad Ghazali, F., Cheah, Y.K.
    MyJurnal
    Successful DNA amplification is vital for the detection of specific DNA targets in feeds, and this in return depends on the ability of DNA extraction methods to produce good quality DNA. In this study, seven methods were compared for DNA extraction from feeds using quantitative polymerase chain reaction (PCR) of single copy maize (Zea mays) endogenous hmg (high mobility group) gene. Relative levels of hmg were used to evaluate the DNA quality. Spectrophotometer determination of DNA was also carried out to assess DNA yield and DNA purity, while electrophoretic analysis of genomic DNA extracts was carried out to investigate DNA integrity. The findings illustrate that the DNA extraction methods have a significant effect on DNA quality. Statistically, the Epicentre method extracted the highest DNA yield while the Wizard method had the lowest DNA yield with high DNA purity and integrity. However, the Wizard method recovered the most amplifiable DNA per reaction, indicating that template quality and integrity had greater influence over hmg amplification than DNA yield.
    Matched MeSH terms: Genomics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links