Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Abd Samad H, Jaafar M, Othman R, Kawashita M, Abdul Razak NH
    Biomed Mater Eng, 2011;21(4):247-58.
    PMID: 22182792 DOI: 10.3233/BME-2011-0673
    In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.
    Matched MeSH terms: Glass/chemistry
  2. Al-Fasih MY, Kueh ABH, W Ibrahim MH
    PLoS One, 2020;15(2):e0227895.
    PMID: 32012168 DOI: 10.1371/journal.pone.0227895
    Skin crack defects can develop in sandwich honeycomb composite structures during service life due to static and impact loads. In this study, the fracture behavior of sandwich honeycomb composite (SHC) beams containing crack at the skin was investigated experimentally and numerically under four-point loading. Three different arrangements of unidirectional (UD) carbon fiber composite and the triaxially woven (TW) fabric were considered for the skins. The presence of a 10 mm crack at mid-span of the top skin, mid-span of the bottom skin, and mid-way between load and support of the top skin, respectively, were considered. Failure load equations of the load initiating the skin crack extension were analytically derived and then numerically developed using the J-integral approach. The crack extension failure mode dominated all cracked specimens except those with low-stiffness skin which were controlled by the compressive skin debonding and core shear failures.
    Matched MeSH terms: Glass/chemistry
  3. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Kadni T
    Radiat Prot Dosimetry, 2013 Jun;155(1):1-10.
    PMID: 23193136 DOI: 10.1093/rpd/ncs310
    The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
    Matched MeSH terms: Glass/chemistry*
  4. Amjad RJ, Sahar MR, Dousti MR, Ghoshal SK, Jamaludin MN
    Opt Express, 2013 Jun 17;21(12):14282-90.
    PMID: 23787617 DOI: 10.1364/OE.21.014282
    We report significant enhancements in Er(3+) luminescence as well as in Raman intensity in silver nanoparticles embedded zinc-tellurite glass. Surface enhanced Raman scattering effect is highlighted for the first time in tellurite glass containing silver NPs resulting in an enhanced Raman signal (~10 times). SAED manifest the growth of Ag(0) nanoparticles along the (111) and (200) crystallographic planes having average diameter in the range 14-36 nm. Surface plasmon resonance bands are observed in the range 484-551 nm. Furthermore, four prominent photoluminescence bands undergo significant enhancements up to 3 times. The enhancement is majorly attributed to the local field effect of silver NPs.
    Matched MeSH terms: Glass/chemistry*
  5. Arzmi MH, Abdul Razak F, Yusoff Musa M, Wan Harun WH
    FEMS Yeast Res., 2012 May;12(3):351-8.
    PMID: 22225549 DOI: 10.1111/j.1567-1364.2011.00786.x
    Phenotypic switching is characterized as a virulence factor of Candida spp. This study was carried out to evaluate the phenotypic switching ability of C. krusei ATCC 14243 and to determine its effect on the biological properties, adherence capacity and susceptibility towards chlorhexidine digluconate (CHX). To induce switched generations C. krusei was cultured under nitrogen-depleted growth conditions by adding phloxine B. These phenotypically switched colonies were designated as the 1st generation. Subsequent sub-culturing was performed to produce the 2nd, 3rd and 4th switched generations. The recovery of the 3rd generation was the highest at 85.7% while that of the 4th generation was lower at 70.8%, and the recovery of the 1st and 2nd generations gradually reduced to 46.6% and 36.4%, respectively. All generations of C. krusei were susceptible towards CHX. The unswitched C. krusei was the most susceptible but the least adherent to coated hard surfaces. The 2nd generation was the least susceptible, but with the highest adherent ability. The minimum inhibition concentration and minimal fungicidal concentration of C. krusei of all generations were determined at 0.4 mg mL(-1) . These observations suggest that the switching activity of C. krusei induces changes to its biological properties and susceptibility towards CHX.
    Matched MeSH terms: Glass/chemistry
  6. Bahari HR, Sidek HA, Adikan FR, Yunus WM, Halimah MK
    Int J Mol Sci, 2012;13(7):8609-14.
    PMID: 22942723 DOI: 10.3390/ijms13078609
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO(2)-PbO-Bi(2)O(3) glass host doped with Er(3+)/Yb(3+) ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi(2)O(3) participate with PbO(4) tetragonal pyramids and strongly distort BiO(6) octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix.
    Matched MeSH terms: Glass/chemistry*
  7. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
    Matched MeSH terms: Glass/chemistry*
  8. Ehsan MA, Naeem R, Khaledi H, Sohail M, Hakeem Saeed A, Mazhar M
    Dalton Trans, 2016 Jun 21;45(25):10222-32.
    PMID: 27230711 DOI: 10.1039/c6dt01016d
    Cobalt titanate-titania composite oxide films have been grown on FTO-coated glass substrates using a single-source heterometallic complex [Co2Ti4(μ-O)6(TFA)8(THF)6]·THF () which was obtained in quantitative yield from the reaction of diacetatocobalt(ii) tetrahydrate, tetraisopropoxytitanium(iv), and trifluoroacetic acid from a tetrahydrofuran solution. Physicochemical investigations of complex have been carried out by melting point, FT-IR, thermogravimetric and single-crystal X-ray diffraction analyses. CoTiO3-TiO2 films composed of spherical objects of various sizes have been grown from by aerosol-assisted chemical vapor deposition at different temperatures of 500, 550 and 600 °C. Thin films characterized by XRD, Raman and X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis have been explored for electrochemical detection of dopamine (DA). The cyclic voltammetry with the CoTiO3-TiO2 electrode showed a DA oxidation peak at +0.215 V while linear sweep voltammetry displayed a detection limit (LoD) of 0.083 μM and a linear concentration range of 20-300 μM for DA. Thus, the CoTiO3-TiO2 electrode is a potential candidate for the sensitive and selective detection of DA.
    Matched MeSH terms: Glass/chemistry
  9. Ghanim MH, Najimudin N, Ibrahim K, Abdullah MZ
    IET Nanobiotechnol, 2014 Jun;8(2):77-82.
    PMID: 25014078 DOI: 10.1049/iet-nbt.2012.0044
    Miniaturisation of microchip capillary electrophoresis (MCE) is becoming an increasingly important research topic, particularly in areas related to micro total analysis systems or lab on a chip. One of the important features associated with the miniaturised MCE system is the portable power supply unit. In this work, a very low electric field MCE utilising an amperometric detection scheme was designed for use in DNA separation. The device was fabricated from a glass/polydimethylsiloxane hybrid engraved microchannel with platinum electrodes sputtered onto a glass substrate. Measurement was based on a three-electrode arrangement, and separation was achieved using a very low electric field of 12 V/cm and sample volume of 1.5 µl. The device was tested using two commercial DNA markers of different base pair sizes. The results are in agreement with conventional electrophoresis, but with improved resolution. The sensitivity consistently higher than 100 nA, and the separation time approximately 45 min, making this microchip an ideal tool for DNA analysis.
    Matched MeSH terms: Glass/chemistry
  10. Goh YF, Akram M, Alshemary AZ, Hussain R
    PMID: 26042687 DOI: 10.1016/j.msec.2015.04.013
    Calcium sulfate-bioactive glass (CSBG) composites doped with 5, 10 and 20 mol% Fe were synthesized using quick alkali sol-gel method. X-ray diffraction (XRD) data of samples heated at 700 °C revealed the presence of anhydrite, while field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) characterization confirmed the formation of nano-sized CSBGs. The UV-vis studies confirmed that the main iron species in 5% Fe and 10% Fe doped CSBGs were tetrahedral Fe(III) whereas that in 20% Fe doped CSBG were extra-framework FeOx oligomers or iron oxide phases. Measurement of magnetic properties of the samples by vibrating sample magnetometer (VSM) showed very narrow hysteresis loop with zero coercivity and remanence for 10% Fe and 20% Fe doped CSBG, indicating that they are superparamagnetic in nature. All samples induced the formation of apatite layer with Ca/P ratio close to the stoichiometric HA in simulated body fluid (SBF) assessment.
    Matched MeSH terms: Glass/chemistry*
  11. Goulter RM, Taran E, Gentle IR, Gobius KS, Dykes GA
    Colloids Surf B Biointerfaces, 2014 Jul 1;119:90-8.
    PMID: 24880987 DOI: 10.1016/j.colsurfb.2014.04.003
    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.
    Matched MeSH terms: Glass/chemistry
  12. Hashim SP, Sidek HA, Halimah MK, Matori KA, Yusof WM, Zaid MH
    Int J Mol Sci, 2013;14(1):1022-30.
    PMID: 23296276 DOI: 10.3390/ijms14011022
    A systematic set of borotellurite glasses doped with manganese (1-x) [(B(2)O(3))(0.3)(TeO(2))(0.7)]-xMnO, with x = 0.1, 0.2, 0.3 and 0.4 mol%, were successfully synthesized by using a conventional melt and quench-casting technique. In this study, the remelting effect of the glass samples on their microstructure was investigated through density measurement and FT-IR spectra and evaluated by XRD techniques. Initial experimental results from XRD evaluation show that there are two distinct phases of glassy and crystallite microstructure due to the existence of peaks in the sample. The different physical behaviors of the studied glasses were closely related to the concentration of manganese in each phase. FTIR spectra revealed that the addition of manganese oxide contributes the transformation of TeO(4) trigonal bipyramids with bridging oxygen (BO) to TeO(3) trigonal pyramids with non-bridging oxygen (NBO).
    Matched MeSH terms: Glass/chemistry*
  13. Ishak KA, Velayutham TS, Annuar MSM, Sirajudeen AAO
    Int J Biol Macromol, 2021 Feb 01;169:311-320.
    PMID: 33340632 DOI: 10.1016/j.ijbiomac.2020.12.090
    Dielectric spectroscopy is employed to study the relaxation phenomena in natural polyhydroxyalkanoates (PHAs) upon temperature and frequency variations. Effects of PHAs molecular structure on the relaxation, arising from the differences in monomeric composition, are investigated under identical conditions in a frequency range of 10-2-106 Hz, and at different temperatures. All PHA samples showed different dielectric response at different temperature. Primary α-relaxation signals are observed at temperature corresponding to the glass transition temperature. On the other hand, secondary β- and γ-relaxations are detected at low temperatures, and attributed to local motions of polar groups and small segments of the polymer chain. The dielectric properties of representative PHA samples are compared and discussed.
    Matched MeSH terms: Glass/chemistry
  14. Jawad AH, Azharul Islam M, Hameed BH
    Int J Biol Macromol, 2017 Feb;95:743-749.
    PMID: 27914966 DOI: 10.1016/j.ijbiomac.2016.11.087
    Fabrication of an immobilized cross-linked chitosan-epichlorohydrine thin film (CLCETF) onto glass plate for adsorption of reactive orange 16 (RO16) dye was successfully studied using the direct casting technique. Adsorption experiments were performed as a function of contact time, initial dye concentration (25mg/L to 350mg/L), and pH (3-11). The adsorption isotherm followed the Langmuir model. The adsorption capacity of CLECTF for RO16 was 356.50mg/g at 27±2°C. The kinetics closely followed the pseudo-second-order model. Results supported the potential use of an immobilized CLECTF as effective adsorbent for the treatment of reactive dye without using filtration process.
    Matched MeSH terms: Glass/chemistry*
  15. Krishnasamy S, Thiagamani SMK, Muthu Kumar C, Nagarajan R, R M S, Siengchin S, et al.
    Int J Biol Macromol, 2019 Dec 01;141:1-13.
    PMID: 31472211 DOI: 10.1016/j.ijbiomac.2019.08.231
    Bio-composites are easy to manufacture and environmentally friendly, could reduce the overall cost and provide lightweight due to the low density of the natural fibers. In a bid to compete with the synthetic fiber reinforced composites, a single natural fiber composite may not be a good choice to obtain optimal properties. Hence, hybrid composites are produced by adding two or more natural fibers together to obtain improved properties, such as mechanical, physical, thermal, water absorption, acoustic and dynamic, among others. Regarding thermal stability, the composites showed a significant change by varying the individual fiber compositions, fiber surface treatments, addition of fillers and coupling agents. The glass transition temperature and melting point obtained from the thermomechanical analysis and differential scanning calorimetry are not the same values for several hybrid composites, since the volume variation was not always parallel with the enthalpy change. However, the difference between the temperature calculated from the thermomechanical analysis and differential scanning calorimetry was lower. Significantly, this critical reviewed study has a potential of guiding all composite designers, manufacturers and users on right selection of composite materials for thermal applications, such as engine components (covers), heat shields and brake ducts, among others.
    Matched MeSH terms: Glass/chemistry*
  16. Loh ZW, Mohd Zaid MH, Matori KA, Kechik MMA, Fen YW, Mayzan MZH, et al.
    J Mech Behav Biomed Mater, 2023 Jul;143:105889.
    PMID: 37150138 DOI: 10.1016/j.jmbbm.2023.105889
    This work investigates the role of sintering temperature on bioactive glass-ceramics derived from the new composition CaO-P2O5-Na2O-B2O3-SiO2 glass system. The sintering behaviour of the samples' physical, structural, and mechanical properties is highlighted in this study. The experimental results indicated that the sintering process improved the crystallization and hardness of the final product. Results from XRD and FTIR showed the existence of carbonate apatite, pseudo-wollastonite, and wollastonite phases. From the results, the bioglass-ceramics sintered at 700 °C obtained the highest densification and optimum mechanical results. It had the value of 5.34 ± 0.21 GPa regarding microhardness and 2.99 ± 0.24 MPa m1/2 concerning fracture toughness, which falls in the range of the human enamel. Also, the sintered samples maintained their bioactivity and biodegradability after being tested in the PBS medium. The bioactivity does not affect but slows down the apatite formation rate. Overall results promoted the novel bioglass-ceramics as a candidate material for dental application.
    Matched MeSH terms: Glass/chemistry
  17. Matinmanesh A, Li Y, Nouhi A, Zalzal P, Schemitsch EH, Towler MR, et al.
    J Mech Behav Biomed Mater, 2018 02;78:273-281.
    PMID: 29190533 DOI: 10.1016/j.jmbbm.2017.11.015
    It has been reported that the adhesion of bioactive glass coatings to Ti6Al4V reduces after degradation, however, this effect has not been quantified. This paper uses bilayer double cantilever (DCB) specimens to determine GIC and GIIC, the critical mode I and mode II strain energy release rates, respectively, of bioactive coating/Ti6Al4V substrate systems degraded to different extents. Three borate-based bioactive glass coatings with increasing amounts of incorporated SrO (0, 15 and 25mol%) were enamelled onto Ti6Al4V substrates and then immersed in de-ionized water for 2, 6 and 24h. The weight loss of each glass composition was measured and it was found that the dissolution rate significantly decreased with increasing SrO content. The extent of dissolution was consistent with the hypothesis that the compressive residual stress tends to reduce the dissolution rate of bioactive glasses. After drying, the bilayer DCB specimens were created and subjected to nearly mode I and mode II fracture tests. The toughest coating/substrate system (one composed of the glass containing 25mol% SrO) lost 80% and 85% of its GIC and GIIC, respectively, in less than 24h of degradation. The drop in GIC and GIIC occurred even more rapidly for other coating/substrate systems. Therefore, degradation of borate bioactive glass coatings is inversely related to their fracture toughness when coated onto Ti6A4V substrates. Finally, roughening the substrate was found to be inconsequential in increasing the toughness of the system as the fracture toughness was limited by the cohesive toughness of the glass itself.
    Matched MeSH terms: Glass/chemistry*
  18. Mhareb MH, Hashim S, Ghoshal SK, Alajerami YS, Saleh MA, Razak NA, et al.
    Luminescence, 2015 Dec;30(8):1330-5.
    PMID: 25828828 DOI: 10.1002/bio.2902
    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.
    Matched MeSH terms: Glass/chemistry*
  19. Mhareb MHA, Alajerami YSM, Alqahtani M, Alshahri F, Saleh N, Alonizan N, et al.
    Luminescence, 2020 Jun;35(4):525-533.
    PMID: 31883298 DOI: 10.1002/bio.3761
    Lithium borate (LB) glasses doped with dysprosium oxide (Dy2 O3 ) have been prepared by utilizing the conventional melt-quench technique. The prepared glass samples were exposed to 60 Co to check their dosimetric features and kinetic parameters. These features involve glow curves, annealing, fading, reproducibility, minimum detectable dose (MDD), and effective atomic number (Zeff ). Kinetic parameters including the frequency factors and activation energy were also determined using three methods (glow curve analysis, initial rise, and peak shape method) and were thoroughly interpreted. In addition, the incorporation of Dy impurities into LB enhanced the thermoluminescence sensitivity ~170 times. The glow from LB:Dy appeared as a single prominent peak at 190°C. The best annealing proceeding was obtained at 300°C for 30 min. Signal stability was reported for a period of 1 and 3 months with a reduction of 26% and 31%, respectively. The proposed glass samples showed promising dosimeter properties that can be recommended for personal radiation monitoring.
    Matched MeSH terms: Glass/chemistry
  20. Mohd Amin MF, Heijman SG, Lopes SI, Rietveld LC
    ScientificWorldJournal, 2014;2014:162157.
    PMID: 25197693 DOI: 10.1155/2014/162157
    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism.
    Matched MeSH terms: Glass/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links