Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Zalina Laili, Muhamad Samudi Yasir, Mohd Abdul Wahab Yusof
    Sains Malaysiana, 2017;46:1617-1623.
    The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was
    investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35
    to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar
    were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix
    was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the
    w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix
    showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins
    matrix increased after two weeks in water immersion test.
    Matched MeSH terms: Glass Ionomer Cements
  2. Zainuddin N, Karpukhina N, Law RV, Hill RG
    Dent Mater, 2012 Oct;28(10):1051-8.
    PMID: 22841162 DOI: 10.1016/j.dental.2012.06.011
    The purpose of this study was to characterize commercial glass polyalkenoate cement (GPC) or glass ionomer cement (GIC), Glass Carbomer(®), which is designed to promote remineralization to fluorapatite (FAp) in the mouth. The setting reaction of the cement was followed using magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy.
    Matched MeSH terms: Glass Ionomer Cements/chemistry*
  3. Yap AU, Ong JE, Yahya NA
    J Mech Behav Biomed Mater, 2021 01;113:104120.
    PMID: 33086137 DOI: 10.1016/j.jmbbm.2020.104120
    OBJECTIVES: This study determined the effects of self-adhesive resin coatings on viscoelastic properties of highly viscous glass ionomer cements (HVGICs) using dynamic mechanical analysis.

    MATERIALS AND METHODS: The HVGICs evaluated were Zirconomer [ZR] (Shofu), Equia Forte [EQ] (GC) and Riva [RV] (SDI). Sixty specimens (12mm x 2mm x 2mm) of each material were fabricated using customized Teflon molds. After initial set, the specimens were removed from their molds, finished, measured and randomly divided into 3 groups of 20. Half the specimens in each group were left uncoated while the remaining half was covered with the respective manufacturers' resin coating. The specimens were subsequently conditioned in distilled water, artificial saliva or citric acid at 37°C for 7 days. The uncoated and coated specimens (n=10) were then subjected to dynamic mechanical testing in flexure mode at 37°C with a frequency of 0.1 to 10Hz. Storage modulus, loss modulus and loss tangent data were subjected to normality testing and statistical analysis using one-way ANOVA/Scheffe's post-hoc test and Ttest at significance level p<0.05.

    RESULTS: Mean storage modulus ranged from 1.39 ± 0.36 to 10.80 ± 0.86 GPa while mean loss modulus varied from 0.13 ± 0.03 to 0.70 ± 0.14 GPa after conditioning in the different mediums. Values for loss tangent ranged from 39.4 ± 7.75 to 213.2 ± 20.11 (x10 -3 ). Significant differences in visco-elastic properties were observed between mediums and materials. When conditioned in distilled water and artificial saliva,storage modulus was significantly improved when ZR, EQ and RV were uncoated. Significantly higher values were, however, observed with resin coating when the materials were exposed to citric acid.

    CONCLUSION: The visco-elastic properties of HVGICs were influenced by both resin coating and chemical environment.

    Matched MeSH terms: Glass Ionomer Cements*
  4. Wei Chong B, Othman R, Jaya RP, Shu Ing D, Li X, Wan Ibrahim MH, et al.
    Materials (Basel), 2021 Mar 28;14(7).
    PMID: 33800634 DOI: 10.3390/ma14071658
    Image analysis techniques are gaining popularity in the studies of civil engineering materials. However, the current established image analysis methods often require advanced machinery and strict image acquisition procedures which may be challenging in actual construction practices. In this study, we develop a simplified image analysis technique that uses images with only a digital camera and does not have a strict image acquisition regime. Mortar with 10%, 20%, 30%, and 40% pozzolanic material as cement replacement are prepared for the study. The properties of mortar are evaluated with flow table test, compressive strength test, water absorption test, and surface porosity based on the proposed image analysis technique. The experimental results show that mortar specimens with 20% processed spent bleaching earth (PSBE) achieve the highest 28-day compressive strength and lowest water absorption. The quantified image analysis results show accurate representation of mortar quality with 20% PSBE mortar having the lowest porosity. The regression analysis found strong correlations between all experimental data and the compressive strength. Hence, the developed technique is verified to be feasible as supplementary mortar properties for the study of mortar with pozzolanic material.
    Matched MeSH terms: Glass Ionomer Cements
  5. Wan Jusoh WN, Matori KA, Mohd Zaid MH, Zainuddin N, Ahmad Khiri MZ, Abdul Rahman NA, et al.
    Materials (Basel), 2021 Feb 18;14(4).
    PMID: 33670465 DOI: 10.3390/ma14040954
    Glass ionomer cement (GIC) is a well-known restorative material applied in dentistry. The present work aims to study the effect of hydroxyapatite (HA) addition into GIC based on physical, mechanical and structural properties. The utilization of waste materials namely clam shell (CS) and soda lime silica (SLS) glass as replacements for the respective CaO and SiO2 sources in the fabrication of alumino-silicate-fluoride (ASF) glass ceramics powder. GIC was formulated based on ASF glass ceramics, polyacrylic acid (PAA) and deionized water, while 1 wt.% of HA powder was added to enhance the properties of the cement samples. The cement samples were subjected to four different ageing times before being analyzed. In this study, the addition of HA caused an increment in density and compressive strength results along with ageing time. Besides, X-ray Diffraction (XRD) revealed the formation of fluorohydroxyapatite (FHA) phase in HA-added GIC samples and it was confirmed by Fourier Transform Infrared (FTIR) analysis which detected OH‒F vibration mode. In addition, needle-like and agglomeration of spherical shapes owned by apatite crystals were observed from Field Emission Scanning Electron Microscopy (FESEM). Based on Energy Dispersive X-ray (EDX) analysis, the detection of chemical elements in the cement samples were originated from chemical compounds used in the preparation of glass ceramics powder and also the polyacid utilized in initiating the reaction of GIC.
    Matched MeSH terms: Glass Ionomer Cements
  6. Wan Bakar W, McIntyre J
    Aust Dent J, 2008 Sep;53(3):226-34.
    PMID: 18782366 DOI: 10.1111/j.1834-7819.2008.00053.x
    Erosive substances such as gastric acids, lemon juice and even the less erosive cola drinks have been extensively investigated for their destructive effects on enamel. However, their effects on the tooth-coloured restoratives has not been widely analysed. The objective of this study was to assess their effects on the more commonly used glass containing restorative materials in vitro.
    Matched MeSH terms: Glass Ionomer Cements*
  7. Vamsi K, Siddiqui F
    J Contemp Dent Pract, 2018 Jul 01;19(7):824-829.
    PMID: 30066686
    AIM: To study the antimicrobial effect of chlorhexidine diacetate (CHX-D)-modified type II glass ionomer cement (GIC) against the two predominant deep caries microorganisms, namely Lactobacillus casei and Actinomyces viscosus.

    MATERIALS AND METHODS: An experimental GIC (ex-GIC) was prepared by mixing CHX-D powder with the powder of type II GIC to obtain 1% (w/w) concentration of CHX-D in the GIC. Antibacterial activity of this ex-GIC was tested against L. casei and A. viscosus using the agar diffusion method. The ex-GIC specimens were tested in their unset and set forms for each bacterium. For the unset group, specimens were placed in each agar plate immediately after manipulation and for the set group, specimens were placed in each agar plate, 1 hour after manipulation. The inhibition zones on the agar plate were recorded in millimeters immediately on placement of the specimen in the agar plate and after 48 hours. The reading was recorded and statistically analyzed for significant difference.

    RESULTS: Mann-Whitney U test showed statistically significant difference in the inhibition zones produced by ex-GIC against L. casei and A. viscosus when both were compared in unset (p-value = 0.002) and set (p-value = 0.031) groups. For both the groups, the zone of inhibition against L. casei was greater. Though the unset group recorded wider zone of inhibition, the difference was not significant when compared with the respective set group. This was true for both the bacterial groups.

    CONCLUSION: The 1% CHX-D-modified type II GIC showed antibacterial property against L. casei and A. viscosus and significantly higher activity against L. casei.

    CLINICAL SIGNIFICANCE: Addition of 1% CHX-D to type II GIC showed evidence of antibacterial activity against organisms found in deep carious lesion and therefore may exhibit superior antimicrobial efficiency when used as an intermediate therapeutic restoration in deep cavities.

    Matched MeSH terms: Glass Ionomer Cements/pharmacology*
  8. Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A
    J Mech Behav Biomed Mater, 2023 Oct;146:106099.
    PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099
    Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
    Matched MeSH terms: Glass Ionomer Cements*
  9. Thomas B, Gupta K
    J Esthet Restor Dent, 2017 Nov 12;29(6):435-441.
    PMID: 28703476 DOI: 10.1111/jerd.12317
    OBJECTIVE: Nano-hydroxyapatite-added GIC has been developed to improve the physical properties of conventional GIC. However, biological response of periodontal cells to this potentially useful cervical restorative material has been unexplored. The aim of this study was to investigate the in vitro response of human periodontal ligament fibroblasts to hydroxyapatite-added GIC.

    MATERIALS AND METHODS: Three categories of materials, namely, test group 1 (cGIC or type IX GIC), test group 2 (HA-GIC or hydroxyapatite-added GIC), and positive control (glass cover slips) were incubated with human periodontal ligament fibroblasts. The samples were viewed under scanning electron microscope to study the morphological characteristics of fibroblasts. Additionally, elemental analysis was performed to differentiate between the two test groups based on surface chemical composition.

    RESULTS: Test group 1 (cGIC) exhibited cells with curled up morphology, indicative of poor attachment to the substrate. Test group 2 (Ha-GIC) exhibited cells with flattened morphology and numerous cellular extensions such as lamellipodia and blebs, indicative of good attachment to the substrate. The test group 2 (Ha-GIC) demonstrated higher surface elemental percentages of calcium and phosphorus.

    CONCLUSION: Within the limitations of this study, it may be concluded that hydroxyapatite-added GIC is more biocompatible than conventional GIC (type IX), probably attributed to high elemental percentages of calcium and phosphorus.

    CLINICAL SIGNIFICANCE: The search for an ideal cervical restorative dental material has been ever elusive. Hydroxyapatite-added GIC is a simple and economical dental material to fabricate from basic conventional GIC. The results from this study strengthen its candidature for cervical and root surface restorations which may later require soft tissue augmentation. The possibility of connective tissue adhesion to this material is an exciting prospect in the field of periorestorative dentistry.

    Matched MeSH terms: Glass Ionomer Cements/pharmacology*
  10. Tengku Yasmin Tengku Azam, Quah, Xin Ying, Ismail Ab Rahman, Sam’an Malik Masudi, Norhayati Luddin, Rashita Abd Rashid
    MyJurnal
    Glass ionomer cement (GIC) has theunique fluoride release property and able to formionic bond with tooth structure. However, the brittleness of the material results in low hardness. In the present study, a new approach in utilization of local waste materials as fillers for improvement of hardness of GIC is reported.The synthesized wollastonite and mine-silica by-product were individually incorporated into commercial GIC and the Vickers hardness were evaluated. The results shown that the incorporation of 1 % wollastonite into GIC gave ~ 6% increment in hardness compared to the control GIC (66.53H ±7.37 versus 62.66HV±2.98)but not for themine-silica. Thus, wollastonite could be a potential material to be utilized as fillersin dental restorative composite
    Matched MeSH terms: Glass Ionomer Cements
  11. Tapsir Z, Aly Ahmed HM, Luddin N, Husein A
    J Contemp Dent Pract, 2013 Jan 1;14(1):47-50.
    PMID: 23579892
    To evaluate and compare the microleakage of various restorative materials used as coronal barriers between endodontic appointments.
    Matched MeSH terms: Glass Ionomer Cements/chemistry
  12. Tang X, Yang Y, Xie Y
    Sains Malaysiana, 2016;45:1543-1550.
    The main objective of this work was to investigate the influence of waterborne epoxy resin emulsion (WER) on the physical properties of oil well cement slurries. Cement slurries containing 5%, 10% and 15% of WER bwoc were compared with WER-free slurries. The rheological behavior was carried out according to API standard. Uniaxial compressive strength and shear bond strength of cement stone were evaluated at the ages of 24, 48 and 72 h. The experimental results illustrate that the addition of WER does not alter the rheological behavior. The addition of WER has increased the shear bond strength almost 52% at 24 h of aging for 10% WER bwoc when compared with unmodified slurry. The enhancement on shear bond strength was attributed to the mechanical anchoring and resin film forming at the interface
    Matched MeSH terms: Glass Ionomer Cements
  13. Sulong MZ, Aziz RA
    J Prosthet Dent, 1990 Mar;63(3):342-9.
    PMID: 2407832
    This is a review of the literature concerning wear related to the following materials used in dentistry: dental amalgam, composite resins, and glass-ionomer cements, as well as natural tooth substance. Discussions are included on both in vivo and in vitro studies in which various methods were used to help determine wear resistance.
    Matched MeSH terms: Glass Ionomer Cements*
  14. Sulaiman, E., Yeo, Y.M., Chong, Y.T.
    Ann Dent, 2007;14(1):39-45.
    MyJurnal
    Purpose of the study: The objective of this study was to investigate the flexural strengths of five commercially available tooth-coloured restorative materials – Alpha-Dent (composite resin, Dental Technologies Inc.), Solare Anterior (composite resin, GC), F2000 (polyacid-modified composite resin, 3M), Beautifil (giomer, Shofu) and Fuji II LC (resin- modified glass ionomer cement, GC] using the ISO 4049 specifications. Materials and Method: Ten specimens of (25±0.2)mm x (2±0.1)mm x (2±0.1)mm from each material were prepared at 22-23ºC using a customized metal mould. After light polymerization, the specimens were stored in distilled water at 37ºC for 24 hours. The specimens were subsequently blotted dry, measured and subjected to flexural testing using an Instron Universal Testing Machine with a crosshead speed of 0.5mm/min. The flexural strengths were calculated from the maximum load exerted on the specimens. Data were analysed using one way ANOVA and scheffe’s post-hoc multiple comparison tests at a significance level of 0.05.Results: The results showed that the mean flexural strengths of Beautifil, Solare Anterior and Alpha-Dent were above 80 MPa and those of F2000 and Fuji II LC were below 80 MPa. The results of one-way ANOVA and Scheffe’s post-host tests demonstrated that Beautifil had significantly higher mean flexural strength compared to Fuji II LC, F2000 and Alpha-Dent (P
    Matched MeSH terms: Glass Ionomer Cements
  15. Suhaida Sabdi, Wan Zaripah Wan Bakar, Adam Husein
    MyJurnal
    Some restorative materials are susceptible to erosion but whether it also causes microleakage is still questionable. The aim of this study was to assess the microleakage of few restorative materials after immersion in acidic solution. Standardized ‘U’ shaped cavity of 4mm diameter and 2mm depth were prepared on buccal or lingual surface of 52 human premolar and molar teeth. The teeth were divided into 4 groups which contains 13 samples and 3 controls for each and were restored either with Filtek Z250 (Group 1), Fuji IX (Group 2), Fuji II LC (Group 3), or Silverfill amalgam (Group 4).
    All surfaces were painted with nail varnish leaving only 2mm of tooth structure surrounding the restoration before the study samples were immersed in acidic solution, lemon juice (pH 2.74) and control samples in deionised distilled water for 24 hours. Surface photos for erosion were taken before immersion in methylene blue for 7 days. After sectioning, the assessment of dye penetration was done using Leica Imaging System DMLM (Germany). Photos showed that Fuji IX demonstrated severe erosion but no obvious changes were seen on other materials. Kruskal-Wallis test indicated that microleakage between all four groups were statistically significant. The most significant difference was between Filtek Z250 and Fuji IX (p
    Matched MeSH terms: Glass Ionomer Cements
  16. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Glass Ionomer Cements
  17. Saran R, Upadhya NP, Ginjupalli K, Amalan A, Rao B, Kumar S
    Int J Dent, 2020;2020:8896225.
    PMID: 33061975 DOI: 10.1155/2020/8896225
    Introduction: Glass ionomer cements (GICs) are commonly used for cementation of indirect restorations. However, one of their main drawbacks is their inferior mechanical properties.

    Aim: Compositional modification of conventional glass ionomer luting cements by incorporating two types of all-ceramic powders in varying concentrations and evaluation of their film thickness, setting time, and strength. Material & Methods. Experimental GICs were prepared by adding different concentrations of two all-ceramic powders (5%, 10, and 15% by weight) to the powder of the glass ionomer luting cements, and their setting time, film thickness, and compressive strength were determined. The Differential Scanning Calorimetry analysis was done to evaluate the kinetics of the setting reaction of the samples. The average particle size of the all-ceramic and glass ionomer powders was determined with the help of a particle size analyzer.

    Results: A significant increase in strength was observed in experimental GICs containing 10% all-ceramic powders. The experimental GICs with 5% all-ceramic powders showed no improvement in strength, whereas those containing 15% all-ceramic powders exhibited a marked decrease in strength. Setting time of all experimental GICs progressively increased with increasing concentration of all-ceramic powders. Film thickness of all experimental GICs was much higher than the recommended value for clinical application.

    Conclusion: 10% concentration of the two all-ceramic powders can be regarded as the optimal concentration for enhancing the glass ionomer luting cements' strength. There was a significant increase in the setting time at this concentration, but it was within the limit specified by ISO 9917-1:2007 specifications for powder/liquid acid-base dental cements. Reducing the particle size of the all-ceramic powders may help in decreasing the film thickness, which is an essential parameter for the clinical performance of any luting cement.

    Matched MeSH terms: Glass Ionomer Cements
  18. Saini, D., Nadig, G., Saini, R.
    MyJurnal
    The main objective of a root end filling material is to provide an apical seal that prevents the movement of bacteria and the diffusion of bacterial products from the root canal system into periapical tissues. The aim of this study was to compare the microleakage of three root end filling materials Mineral trioxide aggregate (MTA), Glass ionomer cement (GIC) and Silver GIC (Miracle Mix) using dye penetration technique under stereomicroscope. Forty-five extracted human maxillary central incisors were instrumented and obturated with gutta percha using lateral compaction technique. Following this, the teeth were stored in saline. After one week, teeth were apically resected at an angle of 90ï° to the long axis of the root and root end cavities were prepared. The teeth were divided into three groups of fifteen specimens each and were filled with Group I -MTA, Group II - GIC and Group III - Miracle Mix. The samples were coated with varnish and after drying, they were immersed in 1% methylene blue dye for 72 hours. The teeth were then rinsed, sectioned longitudinally and observed under stereomicroscope. The depth of dye penetration was measured in millimeters. Microleakage was found to be significantly less in MTA (0.83 mm) when compared to GIC (1.32 mm) (p < 0.001) and with Miracle Mix (1.39 mm) (p < 0.001) No significant difference was found when microleakage in Miracle Mix was compared to that of GIC (p = 0.752). Thus we concluded that MTA is a better material as root end filling material to prevent microleakage, in comparison to GIC and Miracle Mix.
    Matched MeSH terms: Glass Ionomer Cements
  19. Rosnani Ahmad, Rohaidah Md Nor, Siti Azliya Ismail
    MyJurnal
    Sawdust is considered a waste material and a number of innovative ways are being taken to mitigate its effects on the environment. The use of sawdust as additional admixture in cement-sand brick production is an alternative option to mitigate the problem. In this study, three different types of cement-sand brick mixture in proportion of 1%, 2% and 3% of sawdust added to the normal mixture are prepared. Compression test was conducted on the brick mixture and results indicated 1% sawdust satisfy the Class 1 loadbearing brick whilst the 2% sawdust is slightly above the minimum required strength of 5.2 MN/ m2 for an ordinary quality brick set by the Standards MS 76:1972. Thus, the use of sawdust as admixture in cement-sand brick should not exceed 3%.
    Matched MeSH terms: Glass Ionomer Cements
  20. Rajeev V, Arunachalam R, Nayar S, Arunima PR, Ganapathy S, Vedam V
    Eur J Dent, 2017 4 25;11(1):58-63.
    PMID: 28435367 DOI: 10.4103/ejd.ejd_113_16
    OBJECTIVE: This in vitro study was designed to assess shear bond strength (SBS) of ormocer flowable (OF) resin as a luting agent, ormocer as an indirect veneer material with portrayal of modes of failures using scanning electron microscope (SEM).

    MATERIALS AND METHODS: Sixty maxillary central incisors were divided into Group I, II, and III with 20 samples each based on luting cement used. They were OF, self-adhesive (SA) cement, and total etch (TE) cement. These groups were subdivided into "a" and "b" of ten each based on the type of veneering materials used. Veneer discs were fabricated using Ormocer restorative (O) and pressable ceramic (C). Specimens were thermocycled and loaded under universal testing machine for SBS. The statistical analysis was done using one-way ANOVA post hoc Tukey honest significant difference method.

    RESULTS: A significant difference was observed between the Groups I and II (P < 0.05). The highest mean bond strength when using ormocer veneer was obtained with the Group Ia (19.11 ± 1.92 Mpa) and lowest by Group IIa (8.1 ± 1.04 Mpa), whereas the highest mean bond strength while using ceramic veneer was of similar range for Group Ib (18.04 ± 4.08 Mpa) and Group IIIb (18.07 ± 1.40 Mpa). SEM analysis revealed OF and TE presented mixed type of failure when compared with SA where failure mode was totally adhesive.

    CONCLUSION: OF was found equally efficient like TE. Bond strength of ormocer as a veneer was not inferior to ceramic making it one of the promising additions in the field of dentistry.

    Matched MeSH terms: Glass Ionomer Cements
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links