Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: beta-Globins/genetics*
  2. Abdullah UYH, Ibrahim HM, Mahmud NB, Salleh MZ, Teh LK, Noorizhab MNFB, et al.
    Hemoglobin, 2020 May;44(3):184-189.
    PMID: 32586164 DOI: 10.1080/03630269.2020.1781652
    Effective prevention of β-thalassemia (β-thal) requires strategies to detect at-risk couples. This is the first study attempting to assess the prevalence of silent β-thal carriers in the Malaysian population. Hematological and clinical parameters were evaluated in healthy blood donors and patients with β-thal trait, Hb E (HBB: c.79G>A)/β-thal and β-thal major (β-TM). β-Globin gene sequencing was carried out for 52 healthy blood donors, 48 patients with Hb E/β-thal, 34 patients with β-TM and 38 patients with β-thal trait. The prevalence of silent β-thal carrier phenotypes found in 25.0% of healthy Malaysian blood donors indicates the need for clinician's awareness of this type in evaluating β-thal in Malaysia. Patients with β-TM present at a significantly younger age at initial diagnosis and require more blood transfusions compared to those with Hb E/β-thal. The time at which genomic DNA was extracted after blood collection, particularly from patients with β-TM and Hb E/β-thal, was found to be an important determinant of the quality of the results of the β-globin sequencing. Public education and communication campaigns are recommended as apparently healthy individuals have few or no symptoms and normal or borderline hematological parameters. β-Globin gene mutation characterization and screening for silent β-thal carriers in regions prevalent with β-thal are recommended to develop more effective genetic counseling and management of β-thal.
    Matched MeSH terms: beta-Globins/genetics*
  3. Abdullah WA, Jamaluddin NB, Kham SK, Tan JA
    PMID: 9031421
    The spectrum of beta-thalassemia mutations in Malays in Singapore and Kelantan (Northeast Malaysia) was studied. Allele specific priming was used to determine the mutations in beta-carriers at -28, Codon 17, IVSI #1, IVSI #5, Codon 41-42 and IVSII #654 along the beta-globin gene. The most common structural hemoglobin variant in Southeast Asia, Hb E, was detected by DNA amplification with restriction enzyme (Mnl1) analysis. Direct genomic sequencing was carried out to detect the beta-mutations uncharacterized by allele-specific priming. The most prevalent beta-mutations in Singaporean Malays were IVSI #5 (45.83%) followed by Hb E (20.83%), codon 15 (12.5%) and IVSI #1 and IVSII #654 at 4.17% each. In contrast, the distribution of the beta-mutations in Kelantan Malays differed, with Hb E as the most common mutation (39.29%) followed by IVSI #5 (17.86%), codon 41-42 (14.29%), codon 19 (10.71%) and codon 17 (3.57%). The beta-mutations in Kelantan Malays follow closely the distribution of beta-mutations in Thais and Malays of Southern Thailand and Malays of West Malaysia. The AAC-->AGC base substitution in codon 19 has been detected only in these populations. The spectrum of beta-mutations in the Singaporean Malays is more similar to those reported in Indonesia with the beta-mutation at codon 15 (TGG-->TAG) present in both populations. The characterization of beta-mutations in Singaporean and Kelantan Malays will facilitate the establishment of effective prenatal diagnosis programs for beta-thalassemia major in this ethnic group.
    Matched MeSH terms: Globins/genetics
  4. Alauddin H, Kamarudin K, Loong TY, Azma RZ, Ithnin A, Jalil N, et al.
    Hemoglobin, 2018 Jul;42(4):247-251.
    PMID: 30623696 DOI: 10.1080/03630269.2018.1528985
    Nondeletional α-globin mutations are known to cause more serious clinical effects than deletional ones. A rare IVS-I-1 (G>A) (HBA2: c.95+1G>A) donor splice site mutation interferes with normal splicing of pre mRNA and results in activation of a cryptic splice site as well as a frameshift mutation. Hb Adana [HBA2: c.179G>A (or HBA1)] is a highly unstable variant hemoglobin (Hb) resulting from a mutation at codon 59 on the HBA2 or HBA1 gene, recognized to cause severe α-thalassemia (α-thal) syndromes. We report a unique case of compound heterozygosity for these two mutations in a 9-year-old boy who presented with a Hb level of 5.3 g/dL and hepatomegaly at the age of 15 months. He required regular blood transfusions in view of a Hb level of <7.0 g/dL and failure to thrive. He had thalassemic red cell indices and peripheral blood film. The Hb electrophoresis only showed a raised Hb F level (3.3%) and a pre run peak but the Hb H inclusion test was negative. His father had thalassemic red cell indices but a normal Hb level. His mother had almost normal Hb levels and red cell indices. Hb Adana involving the HBA2 gene was detected by mutiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in the proband and his father. DNA sequencing of the HBA2 gene confirmed the IVS-I-1 mutation in the proband and his mother. This case highlighted the unique interaction of the IVS-I-1 mutation with Hb Adana in a young Malay boy presenting with transfusion-dependent α-thal.
    Matched MeSH terms: alpha-Globins/genetics
  5. Azma RZ, Othman A, Azman N, Alauddin H, Ithnin A, Yusof N, et al.
    Malays J Pathol, 2012 Jun;34(1):57-62.
    PMID: 22870600
    Haemoglobin Constant Spring (Hb CS) mutation and single gene deletions are common underlying genetic abnormalities for alpha thalassaemias. Co-inheritance of deletional and non-deletional alpha (alpha) thalassaemias may result in various thalassaemia syndromes. Concomitant co-inheritance with beta (beta) and delta (delta) gene abnormalities would result in improved clinical phenotype. We report here a 33-year-old male patient who was admitted with dengue haemorrhagic fever, with a background history of Grave's disease, incidentally noted to have mild hypochromic microcytic red cell indices. Physical examination revealed no thalassaemic features or hepatosplenomegaly. His full blood picture showed hypochromic microcytic red cells with normal haemoglobin (Hb) level. Quantitation of Hb using high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) revealed raised Hb F, normal Hb A2 and Hb A levels. There was also small peak of Hb CS noted in CE. H inclusions was negative. Kleihauer test was positive with heterocellular distribution of Hb F among the red cells. DNA analysis for alpha globin gene mutations showed a single -alpha(-3.7) deletion and Hb CS mutation. These findings were suggestive of compound heterozygosity of Hb CS and a single -alpha(-3.7) deletion with a concomitant heterozygous deltabeta thalassaemia. Co-inheritance of Hb CS and a single -alpha(-3.7) deletion is expected to result at the very least in a clinical phenotype similar to that of two alpha genes deletion. However we demonstrate here a phenotypic modification of alpha thalassemia presumptively as a result of co-inheritance with deltabeta chain abnormality as suggested by the high Hb F level.
    Matched MeSH terms: alpha-Globins/genetics*
  6. Chen JJ, Tan JA, Chua KH, Tan PC, George E
    BMJ Open, 2015 Jul 22;5(7):e007648.
    PMID: 26201722 DOI: 10.1136/bmjopen-2015-007648
    OBJECTIVES: Single nucleotide polymorphism (SNP) with a mutation can be used to identify the presence of the paternally-inherited wild-type or mutant allele as result of the inheritance of either allele in the fetus and allows the prediction of the fetal genotype. This study aims to identify paternal SNPs located at the flanking regions upstream or downstream from the β-globin gene mutations at CD41/42 (HBB:c.127_130delCTTT), IVS1-5 (HBB:c.92+5G>C) and IVS2-654 (HBB:c.316-197C>T) using free-circulating fetal DNA.

    SETTING: Haematology Lab, Department of Biomedical Science, University of Malaya.

    PARTICIPANTS: Eight couples characterised as β-thalassaemia carriers where both partners posed the same β-globin gene mutations at CD41/42, IVS1-5 and IVS2-654, were recruited in this study.

    OUTCOME MEASURES: Genotyping was performed by allele specific-PCR and the locations of SNPs were identified after sequencing alignment.

    RESULTS: Genotype analysis revealed that at least one paternal SNP was present for each of the couples. Amplification on free-circulating DNA revealed that the paternal mutant allele of SNP was present in three fcDNA. Thus, the fetuses may be β-thalassaemia carriers or β-thalassaemia major. Paternal wild-type alleles of SNP were present in the remaining five fcDNA samples, thus indicating that the fetal genotypes would not be homozygous mutants.

    CONCLUSIONS: This preliminary research demonstrates that paternal allele of SNP can be used as a non-invasive prenatal diagnosis approach for at-risk couples to determine the β-thalassaemia status of the fetus.

    Matched MeSH terms: beta-Globins/genetics*
  7. Etemad A, Vasudevan R, Aziz AF, Yusof AK, Khazaei S, Fawzi N, et al.
    Genet. Mol. Res., 2016 Apr 07;15(2).
    PMID: 27173202 DOI: 10.4238/gmr.15025845
    Type 2 diabetes mellitus (T2DM) is believed to be associated with excessive production of reactive oxygen species. Glutathione S-transferase (GST) polymorphisms result in decreased or absent enzyme activity and altered oxidative stress, and have been associated with cardiovascular disease (CVD). The present study assessed the effect of GST polymorphisms on the risk of developing T2DM in individuals of Malaysian Malay ethnicity. A total of 287 subjects, consisting of 87 T2DM and 64 CVD/T2DM patients, as well as 136 healthy gender- and age-matched controls were genotyped for selected polymorphisms to evaluate associations with T2DM susceptibility. Genomic DNA was extracted using commercially available kits, and GSTM1, GSTT1, and α-globin sequences were amplified by multiplex polymerase chain reaction. Biochemical parameters were measured with a Hitachi autoanalyzer. The Fisher exact test, the chi-square statistic, and means ± standard deviations were calculated using the SPSS software. Overall, we observed no significant differences regarding genotype and allele frequencies between each group (P = 0.224 and 0.199, respectively). However, in the combined analysis of genotypes and blood measurements, fasting plasma glucose, HbA1c, and triglyceride levels, followed by age, body mass index, waist-hip ratio, systolic blood pressure, and history of T2DM significantly differed according to GST polymorphism (P ˂ 0.05). Genetically induced absence of the GSTT1 enzyme is an independent and powerful predictor of premature vascular morbidity and death in individuals with T2DM, and might be triggered by cigarette smoking's oxidative effects. These polymorphisms could be screened in other ethnicities within Malaysia to determine further possible risk factors.
    Matched MeSH terms: alpha-Globins/genetics
  8. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: Globins/genetics*
  9. George E, Jama T, Azian AS, Rahimah A, Zubaidah Z
    Med J Malaysia, 2009 Dec;64(4):321-2.
    PMID: 20954559
    A rare case of thalassaemia-intermedia involving a non-deletion alpha thalassemia point mutation in the alpha1-globin gene CD59 (GGC --> GAC) and a deletion alpha+ (-alpha(3.7)) thalassaemia in which use of high performance liquid chromatography (HPLC) C-gram Hb subtype profile and DNA molecular analysis helped establish the diagnosis.
    Matched MeSH terms: alpha-Globins/genetics*
  10. George E
    PMID: 8629111
    Beta-thalassemia in West Malaysia is caused by 14 molecular defects with differing clinical severity. In Chinese patients from West Malaysia, the main beta-thalassemia mutations seen were (a) a 4 base pair-TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)]; (b) a C to T substitution at the second intervening sequence (IVS2-654); (c) an A to G substitution in the TATA box [-28 (A to G)], and (d) an A to T substitution in codon 17[17 A to T]. In the Malays, the main mutations seen were (a) a G to C in nucleotide 5 at the intervening sequence I [IVS1-5 (G to C)]; (b) G to T substitution in nucleotide I at the intervening sequence I [IVS1-1 (G to T)]; (c) a A to T substitution in codon 17 (17 A to T); (d) removal of C from codon 35 [codon 35 (-C)], and (e) a 4 base pairs-TCTT deletion in codon 41-42 [frameshift mutation (FSC 41-42)]. A scoring system (Tha1 CS) has been formulated to predict clinical severity. It is the type of beta-thalassemia mutation present that decides on the clinical phenotype. The most severe beta-thalassemia mutation is assigned a score of 4. A score of 8 indicates severe thalassemia.
    Matched MeSH terms: Globins/genetics*
  11. George E, Faridah K, Trent RJ, Padanilam BJ, Huang HJ, Huisman TH
    Hemoglobin, 1986;10(4):353-63.
    PMID: 2427478
    Hematological and clinical data are presented for a young Malay patient with a homozygous (delta beta)zero-thalassemic condition. His red blood cells contained 100% fetal hemoglobin with alpha and G gamma chains only. Detailed gene mapping defined a large deletion with a 5' end between the Aha III and Apa I sites, some 200-400 bp 5' to the A gamma globin gene and a 3' end beyond sequences 17-18 kb 3' to the beta globin gene. This G gamma (A gamma delta beta)zero-type of thalassemia is different from all the other six types described before. Comparison of the hematological data of this patient with those of homozygotes for either the Sicilian or Spanish types of G gamma A gamma (delta beta)zero-thalassemia showed no differences; all homozygotes have a moderate anemia which is accentuated by the relatively high oxygen affinity of the Hb F containing erythrocytes.
    Matched MeSH terms: Globins/genetics
  12. George E, Teh LK, Tan J, Lai MI, Wong L
    Pathology, 2013 01;45(1):62-5.
    PMID: 23222244 DOI: 10.1097/PAT.0b013e32835af7c1
    AIMS: Classical carriers of β-thalassaemia are identified by a raised HbA2 level. Earlier studies indicated that the Filipino β-deletion has high raised HbA2 levels. The introduction of automated high performance liquid chromatography (HPLC) for thalassaemia screening is an important advance in technology for haematology laboratories. The BioRad Variant II Hb analyser is a common instrument used to quantify HbA2 levels in thalassaemia screening. This study aimed to determine HbA2 levels in carriers of Filipino β-mutation using the BioRad Variant II Hb analyser.

    METHODS: The Filipino β-deletion was identified using gap-polymerase chain reaction (PCR) in the parents of transfusion dependent β-thalassaemia patients who were homozygous for the Filipino β-deletion in the indigenous population of Sabah, Malaysia. Hb subtypes were quantified on the BioRad Variant II Hb analyser. Concurrent α-thalassaemia was identified by multiplex gap-PCR for deletions and amplification refractory mutation system (ARMS)-PCR for non-deletional mutations.

    RESULTS: The mean HbA2 level for Filipino β-thalassaemia trait was 5.9 ± 0.47 and with coinheritance of α-thalassaemia was 6.3 ± 0.44 (-α heterozygous) and 6.7 ± 0.36 (-α homozygous). The HbA2 levels were all >4% in keeping with the findings of classical β-thalassaemia trait and significantly higher than levels seen in non-deletional forms of β-thalassaemia.

    CONCLUSION: The HbA2 level measured on the BioRad Variant II Hb analyser was lower than the level in the first description of the Filipino β-thalassaemia. β-thalassaemia trait with coinheritance of α-thalassaemia (-α) is associated with significantly higher HbA2 level.

    Matched MeSH terms: beta-Globins/genetics
  13. George E, Wong HB, Jamaluddin M, Huisman TH
    Singapore Med J, 1993 Jun;34(3):241-4.
    PMID: 8266182
    Following complete DNA characterisation patients with Hb H disease were assigned into two groups: deletional (alpha +/alpha o) and non deletional (HbCS/alpha o). Earlier studies have indicated that the group with (HbCS/alpha o) has more severe clinical problems. The serum malonyldialdehyde (MDA) levels, a secondary product of lipid peroxidation were within the normal range, though significantly higher levels of MDA were seen in the non-deletional type of Hb H disease when compared with the deletional type. Markedly low vitamin E levels were also seen in the former group. There were no significant differences in clinical severity may be attributed to an interplay of the accelerated destruction of damaged mature red blood cells secondary to the oxidative denaturation of Hb H and inclusion precipitation; higher levels of Hb H and more inclusion precipitation were seen in the group with (HbCS/alpha o). Low levels of vitamin E in the (HbCS/alpha o) group being due to its consumption in the neutralisation of free radicals formed with the oxidation of globin chains.
    Matched MeSH terms: Globins/genetics
  14. Harano K, Harano T
    Rinsho Byori, 2010 Apr;58(4):325-31.
    PMID: 20496759
    Hb and gene analyses of a Malaysian mother and her two daughters with microcytic anemia living in Japan were performed. Hb analyses of their hemolysates by IEF and DEAE-HPLC revealed high values of Hb A2 and HbF, but abnormal Hbs such as Hb E and Hb Constant Spring, which cause beta- and alpha-thalassemia traits, were not detected. From these data, they were suspected to be beta-thalassemia carriers. The thalassemic mutations commonly found in the Asian area by ARMS and nucleotide sequencing methods were not detected, and the frameworks of the beta-globin gene and the haplotypes of the beta-like globin gene cluster between the mother and daughters were not identical. These results led us to conclude that there was a beta(0)-thalassemia mutation with a large deletion from the beta-globin gene beyond the 3'beta/BamHI polymorphic site 3' downstream to the beta-globin gene. However, the range of the deletion from the beta-like globin gene cluster has not yet been completed in detail. Recently, there have been many foreigners mainly from Asian countries in Japan. We may encounter people with the rare type thalassemic mutation described in the text besides the mutations frequently found in Asian countries.
    Matched MeSH terms: beta-Globins/genetics*
  15. Hsu CH, Langdown J, Lynn R, Fisher C, Rose A, Proven M, et al.
    Hemoglobin, 2018 May;42(3):199-202.
    PMID: 30328734 DOI: 10.1080/03630269.2018.1513849
    We report a novel hemoglobin (Hb) variant with a β chain amino acid substitution at codon 78 (CTG>CCG) (HBB: c.236T>C), detected through prenatal screening via capillary electrophoresis (CE) in an otherwise healthy and asymptomatic 38-year-old female of Southeast Asian ancestry. The variant, named Hb Penang after the proband's Malaysian city of origin, underwent further characterization through high performance liquid chromatography (HPLC), reversed phase HPLC, Sanger sequencing, isopropanol stability testing and isoelectric focusing (IEF).
    Matched MeSH terms: beta-Globins/genetics*
  16. Jankovic L, Efremov GD, Petkov G, Kattamis C, George E, Yang KG, et al.
    Br J Haematol, 1990 May;75(1):122-6.
    PMID: 2375910
    In an ongoing effort to identify point mutations causing beta-thalassaemia, we have found two previously unreported mutations which are located in the Poly A site of the beta-globin gene. The screening programme used amplified DNA and dot-blot hybridization with several 32P-labelled oligonucleotide probes. DNA samples which remained unidentified by this methodology were subjected to sequencing with 32P-labelled primers and modified T7 DNA polymerase. The newly discovered mutations were confirmed by the dot-blot hybridization technique. One type concerned an AATAAA----AATGAA mutation in the polyadenylation site and was found in one family from Yugoslavia (including one patient with the C----T mutation at codon 29 in trans), one from Bulgaria (the patient had the G----A mutation at IVS-I-110 in trans), and one from Greece (this patient had the C----G mutation at IVS-II-745 in trans). Haematological data for three simple heterozygotes suggested a rather mild beta(+)-thalassemia. The second type involved an AATAAA----AATAGA mutation and was found in one family from Malaysia. The propositus had the beta E mutation on the other chromosome, was originally diagnosed as mild Hb E-beta(+)-thalassaemia, and had Hb A and Hb E percentages which were nearly the same.
    Matched MeSH terms: Globins/genetics*
  17. Jo T, Momita S, Sadamori N, Tomonaga M, Fucharoem S, Fukumaki Y, et al.
    Intern. Med., 1992 Feb;31(2):269-72.
    PMID: 1600278
    A 26-year-old Chinese-Malaysian female patient with beta-thalassemia is presented. The main hematological values found in this patient were as follows: 1) normocytic hypochromic anemia (RBC 444 x 10(4)/microliters, Hb 11.8 g/dl) with marked anisopoikilocytosis, 2) erythroid hyperplasia, and 3) increased HbF (HbA 41.4%, HbA2 2.9%, HbF 48.9%). DNA obtained from peripheral leukocytes was analyzed using dot blot hybridization of the polymerase chain reaction (PCR)-amplified DNA with allele-specific oligonucleotide probes. A C----T substitution at position 654 of the second intervening sequence (IVS-2) was detected in her beta-globin clone.
    Matched MeSH terms: Globins/genetics*
  18. Joishy SK, Hassan K, Lopes M, Lie-Injo LE
    Trans R Soc Trop Med Hyg, 1988;82(4):515-9.
    PMID: 3076706
    Clinical studies were carried out on mild Indian sickle cell anaemia in Malaysia, and genetic and fertility studies were carried out on 101 families with and without sickle-cell haemoglobin (Hb S). The Indian sickle cell anaemia patients reached adulthood, and pregnancies and deliveries were uneventful without blood transfusion. There was no foetal wastage and the number of children produced was not significantly different from that in families without Hb S. 28 Indian patients hospitalized with Plasmodium falciparum malaria infection were also examined for their beta S genotype. P. falciparum malaria infection occurred much more frequently in individuals without Hb S than in Hb S carriers.
    Matched MeSH terms: Globins/genetics*
  19. Kalle Kwaifa I, Lai MI, Md Noor S
    Orphanet J Rare Dis, 2020 06 29;15(1):166.
    PMID: 32600445 DOI: 10.1186/s13023-020-01429-1
    BACKGROUND: Defective synthesis of the α-globin chain due to mutations in the alpha-globin genes and/or its regulatory elements leads to alpha thalassaemia syndrome. Complete deletion of the 4 alpha-globin genes results in the most severe phenotype known as haemoglobin Bart's, which leads to intrauterine death. The presence of one functional alpha gene is associated with haemoglobin H disease, characterised by non-transfusion-dependent thalassaemia phenotype, while silent and carrier traits are mostly asymptomatic.

    MAIN BODY: Clinical manifestations of non-deletional in alpha thalassaemia are varied and have more severe phenotype compared to deletional forms of alpha thalassaemia. Literature for the molecular mechanisms of common non-deletional alpha thalassaemia including therapeutic measures that are necessarily needed for the understanding of these disorders is still in demand. This manuscript would contribute to the better knowledge of how defective production of the α-globin chains due to mutations on the alpha-globin genes and/or the regulatory elements leads to alpha thalassaemia syndrome.

    CONCLUSION: Since many molecular markers are associated with the globin gene expression and switching over during the developmental stages, there is a need for increased awareness, new-born and prenatal screening program, especially for countries with high migration impact, and for improving the monitoring of patients with α-thalassaemia.

    Matched MeSH terms: alpha-Globins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links