Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA
    Int J Nanomedicine, 2011;6:569-74.
    PMID: 21674013 DOI: 10.2147/IJN.S16867
    Silver nanoparticles (Ag-NPs) have been successfully prepared with simple and "green" synthesis method by reducing Ag(+) ions in aqueous gelatin media with and in the absence of glucose as a reducing agent. In this study, gelatin was used for the first time as a reducing and stabilizing agent. The effect of temperature on particle size of Ag-NPs was also studied. It was found that with increasing temperature the size of nanoparticles is decreased. It was found that the particle size of Ag-NPs obtained in gelatin solutions is smaller than in gelatin-glucose solutions, which can be related to the rate of reduction reaction. X-ray diffraction, ultraviolet-visible spectra, transmission electron microscopy, and atomic force microscopy revealed the formation of monodispersed Ag-NPs with a narrow particle size distribution.
    Matched MeSH terms: Glucose/chemistry*
  2. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, et al.
    Int J Mol Sci, 2012;13(6):6639-50.
    PMID: 22837654 DOI: 10.3390/ijms13066639
    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
    Matched MeSH terms: Glucose/chemistry
  3. Gumel AM, Annuar MS, Heidelberg T
    Int J Biol Macromol, 2013 Apr;55:127-36.
    PMID: 23305702 DOI: 10.1016/j.ijbiomac.2012.12.028
    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability.
    Matched MeSH terms: Glucose/chemistry
  4. Mizzouri NSh, Shaaban MG
    J Hazard Mater, 2013 Apr 15;250-251:333-44.
    PMID: 23474407 DOI: 10.1016/j.jhazmat.2013.01.082
    This study analyzes the effects of toxic, hydraulic, and organic shocks on the performance of a lab-scale sequencing batch reactor (SBR) with a capacity of 5L. Petroleum refinery wastewater (PRWW) was treated with an organic loading rate (OLR) of approximately 0.3 kg chemical oxygen demand (COD)/kg MLSSd at 12.8h hydraulic retention time (HRT). A considerable variation in the COD was observed for organic, toxic, hydraulic, and combined shocks, and the worst values observed were 68.9, 77.1, 70.2, and 57.8%, respectively. Improved control of toxic shock loads of 10 and 20mg/L of chromium (VI) was identified. The system was adversely affected by the organic shock when a shock load thrice the normal value was used, and this behavior was repeated when the hydraulic shock was 4.8h HRT. The empirical recovery period was greater than the theoretical period because of the inhibitory effects of phenols, sulfides, high oil, and grease in the PRWW. The system recovery rates from the shocks were in the following order: toxic, organic, hydraulic, and combined shocks. System failure occurred when the combined shocks of organic and hydraulic were applied. The system was resumed by replacing the PRWW with glucose, and the OLR was reduced to half its initial value.
    Matched MeSH terms: Glucose/chemistry
  5. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Glucose/chemistry
  6. Hasnol ND, Jinap S, Sanny M
    Food Chem, 2014 Feb 15;145:514-21.
    PMID: 24128508 DOI: 10.1016/j.foodchem.2013.08.086
    The aim of the study was to determine the effect of different types of sugar on the formation of heterocyclic amines (HCA) in marinated grilled chicken. Chicken breast samples were marinated with table sugar, brown sugar, and honey for 24h at 4 °C. The internal temperature, weight loss, free amino acids, sugars, and HCA were determined. The concentrations of all types of HCA (except IQx) in samples that were marinated with table sugar were significantly higher (p<0.006) than brown sugar; whereas those were marinated with honey had the lowest HCA concentrations. A substantial reduction in the concentration of MeIQ, PhIP, DiMeIQx, IQ, IQx, and norharman was achieved in chicken marinated with honey. A correlation study indicated that adding honey into the recipe retarded the formation of most HCA (MeIQ, DiMeIQx, IQ, IQx, norharman, and harman), whereas table sugars enhanced the formation of all HCA except norharman, harman, and AαC.
    Matched MeSH terms: Glucose/chemistry*
  7. Ahmadi S, Manickam Achari V, Nguan H, Hashim R
    J Mol Model, 2014 Mar;20(3):2165.
    PMID: 24623320 DOI: 10.1007/s00894-014-2165-0
    Fully atomistic molecular dynamics simulation studies of thermotropic bilayers were performed using a set of glycosides namely n-octyl-β-D-glucopyranoside (β-C8Glc), n-octyl-α-D-glucopyranoside (α-C8Glc), n-octyl-β-D-galactopyranoside (β-C8Gal), and n-octyl-α-D-galactopyranoside (α-C8Gal) to investigate the stereochemical relationship of the epimeric/anomeric quartet liner glycolipids with the same octyl chain group. The results showed that, the anomeric stereochemistry or the axial/equatorial orientation of C1-O1 (α/β) is an important factor controlling the area and d-spacing of glycolipid bilayer systems in the thermotropic phase. The head group tilt angle and the chain ordering properties are affected by the anomeric effect. In addition, the L(C) phase of β-C8Gal, is tilting less compared to those in the fluid L(α). The stereochemistry of the C4-epimeric (axial/equatorial) and anomeric (α/β) centers simultaneously influence the inter-molecular hydrogen bond. Thus, the trend in the values of the hydrogen bond for these glycosides is β-C8Gal > α-C8Glc > β-C8Glc > α-C8Gal. The four bilayer systems showed anomalous diffusion behavior with an observed trend for the diffusion coefficients; and this trend is β-C8Gal > β-C8Glc > α-C8Gal > α-C8Glc. The "bent" configuration of the α-anomer results in an increase of the hydrophobic area, chain vibration and chain disorganization. Since thermal energy is dispensed more entropically for the chain region, the overall molecular diffusion decreases.
    Matched MeSH terms: Glucose/chemistry
  8. Tan IS, Lee KT
    Carbohydr Polym, 2015 Jun 25;124:311-21.
    PMID: 25839825 DOI: 10.1016/j.carbpol.2015.02.046
    The aim of this study is to investigate the technical feasibility of converting macroalgae cellulosic residue (MCR) into bioethanol. An attempt was made to present a novel, environmental friendly and economical pretreatment process that enhances enzymatic conversion of MCR to sugars using Dowex (TM) Dr-G8 as catalyst. The optimum yield of glucose reached 99.8% under the optimal condition for solid acid pretreatment (10%, w/v biomass loading, 4%, w/v catalyst loading, 30min, 120°C) followed by enzymatic hydrolysis (45FPU/g of cellulase, 52CBU/g of β-glucosidase, 50°C, pH 4.8, 30h). The yield of sugar obtained was found more superior than conventional pretreatment process using H2SO4 and NaOH. Biomass loading for the subsequent simultaneous saccharification and fermentation (SSF) of the pretreated MCR was then optimized, giving an optimum bioethanol yield of 81.5%. The catalyst was separated and reused for six times, with only a slight drop in glucose yield.
    Matched MeSH terms: Glucose/chemistry
  9. Zakaria MR, Hirata S, Fujimoto S, Hassan MA
    Bioresour Technol, 2015 Oct;193:128-34.
    PMID: 26125612 DOI: 10.1016/j.biortech.2015.06.074
    Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively.
    Matched MeSH terms: Glucose/chemistry
  10. Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NN, Ababneh B, Tousi ET
    Phys Med, 2016 Jan;32(1):36-41.
    PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003
    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
    Matched MeSH terms: Glucose/chemistry*
  11. Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM, Rasib SZ
    Int J Biol Macromol, 2016 Feb;83:376-84.
    PMID: 26597568 DOI: 10.1016/j.ijbiomac.2015.11.040
    A new approach to design multifunctional chitosan based nanohydrogel with enhanced glucose sensitivity, stability, drug loading and release profile are reported. Two approaches were followed for functionalization of chitosan based nanohydrogel with 3-APBA via EDC and 3-APTES. The effective functionalization, structure and morphology of Chitosan based IPN respectively were confirmed by FTIR, SEM and AFM. At physiological conditions, the glucose-induced volume phase transition and release profile of the model drug Alizarin Red with 1,2-diol structure (comparative to insulin as a drug as well as a dye for bio separation) were studied at various glucose concentrations, pH and ionic strengths. The results suggested a new concept for diabetes treatment and diols sensitivity in view of their potential hi-tech applications in self-regulated on-off response to the treatment (drug delivery and bio separation concurrently).
    Matched MeSH terms: Glucose/chemistry*
  12. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
    Matched MeSH terms: Glucose/chemistry
  13. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Oct;218:257-64.
    PMID: 27372004 DOI: 10.1016/j.biortech.2016.06.084
    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol.
    Matched MeSH terms: Glucose/chemistry
  14. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Glucose/chemistry
  15. Sarwono A, Man Z, Muhammad N, Khan AS, Hamzah WSW, Rahim AHA, et al.
    Ultrason Sonochem, 2017 Jul;37:310-319.
    PMID: 28427638 DOI: 10.1016/j.ultsonch.2017.01.028
    5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C4C1im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13C NMR suggests that [C4C1im]Cl/CrCl3 catalyses mutarotation of α-glucopyranose to β-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit.
    Matched MeSH terms: Glucose/chemistry*
  16. Sharifzadeh G, Hosseinkhani H
    Adv Healthc Mater, 2017 Dec;6(24).
    PMID: 29057617 DOI: 10.1002/adhm.201700801
    Recent advances and applications of biomolecule-responsive hydrogels, namely, glucose-responsive hydrogels, protein-responsive hydrogels, and nucleic-acid-responsive hydrogels are highlighted. However, achieving the ultimate purpose of using biomolecule-responsive hydrogels in preclinical and clinical areas is still at the very early stage and calls for more novel designing concepts and advance ideas. On the way toward the real/clinical application of biomolecule-responsive hydrogels, plenty of factors should be extensively studied and examined under both in vitro and in vivo conditions. For example, biocompatibility, biointegration, and toxicity of biomolecule-responsive hydrogels should be carefully evaluated. From the living body's point of view, biocompatibility is seriously depended on the interactions at the tissue/polymer interface. These interactions are influenced by physical nature, chemical structure, surface properties, and degradation of the materials. In addition, the developments of advanced hydrogels with tunable biological and mechanical properties which cause no/low side effects are of great importance.
    Matched MeSH terms: Glucose/chemistry
  17. Ahmad N, Zakaria MR, Mohd Yusoff MZ, Fujimoto S, Inoue H, Ariffin H, et al.
    Molecules, 2018 May 30;23(6).
    PMID: 29848973 DOI: 10.3390/molecules23061310
    The present work aimed to investigate the pretreatment of oil palm mesocarp fiber (OPMF) in subcritical H₂O-CO₂ at a temperature range from 150⁻200 °C and 20⁻180 min with CO₂ pressure from 3⁻5 MPa. The pretreated solids and liquids from this process were separated by filtration and characterized. Xylooligosaccharides (XOs), sugar monomers, acids, furans and phenols in the pretreated liquids were analyzed by using HPLC. XOs with a degree of polymerization X2⁻X4 comprising xylobiose, xylotriose, xylotetraose were analyzed by using HPAEC-PAD. Enzymatic hydrolysis was performed on cellulose-rich pretreated solids to observe xylose and glucose production. An optimal condition for XOs production was achieved at 180 °C, 60 min, 3 MPa and the highest XOs obtained was 81.60 mg/g which corresponded to 36.59% of XOs yield from total xylan of OPMF. The highest xylose and glucose yields obtained from pretreated solids were 29.96% and 84.65%, respectively at cellulase loading of 10 FPU/g-substrate.
    Matched MeSH terms: Glucose/chemistry*
  18. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
    Matched MeSH terms: Glucose/chemistry
  19. Ridhuan NS, Abdul Razak K, Lockman Z
    Sci Rep, 2018 09 13;8(1):13722.
    PMID: 30213995 DOI: 10.1038/s41598-018-32127-5
    Highly oriented ZnO nanorod (NR) arrays were fabricated on a seeded substrate through a hydrothermal route. The prepared ZnO nanorods were used as an amperometric enzyme electrode, in which glucose oxidase (GOx) was immobilised through physical adsorption. The modified electrode was designated as Nafion/GOx/ZnO NRs/ITO. The morphology and structural properties of the fabricated ZnO nanorods were analysed using field-emission scanning electron microscope and X-ray diffractometer. The electrochemical properties of the fabricated biosensor were studied by cyclic voltammetry and amperometry. Electrolyte pH, electrolyte temperature and enzyme concentration used for immobilisation were the examined parameters influencing enzyme activity and biosensor performance. The immobilised enzyme electrode showed good GOx retention activity. The amount of electroactive GOx was 7.82 × 10-8 mol/cm2, which was relatively higher than previously reported values. The Nafion/GOx/ZnO NRs/ITO electrode also displayed a linear response to glucose ranging from 0.05 mM to 1 mM, with a sensitivity of 48.75 µA/mM and a low Michaelis-Menten constant of 0.34 mM. Thus, the modified electrode can be used as a highly sensitive third-generation glucose biosensor with high resistance against interfering species, such as ascorbic acid, uric acid and L-cysteine. The applicability of the modified electrode was tested using human blood samples. Results were comparable with those obtained using a standard glucometer, indicating the excellent performance of the modified electrode.
    Matched MeSH terms: Glucose/chemistry
  20. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
    Matched MeSH terms: Glucose/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links