Displaying publications 1 - 20 of 306 in total

  1. Abdollahi M, Zuki AB, Goh YM, Rezaeizadeh A, Noordin MM
    Histol Histopathol, 2011 01;26(1):13-21.
    PMID: 21117023 DOI: 10.14670/HH-26.13
    The aim of this research was to determine the effects of Momordica charantia (MC) fruit aqueous extract on pancreatic histopathological changes in neonatal STZ-induced type-II diabetic rats. Diabetes mellitus was induced in one day Sprague-Dawley neonatal rats using a single intrapretoneal injection of streptozotocin (STZ) (85 mg/kg body weight) and monitored for 12 weeks thereafter. The diabetic rats were separated into three groups, as follows: the diabetic control group (i.e. nSTZ), the diabetic group (i.e. nSTZ/M) - which was orally given 20 mg/kg of MC fruit extract, and the diabetic group (i.e. nSTZ/G) - that was treated with glibenclamide, 0.1 mg/kg for a period of four weeks. At the end of treatment, the animals were sacrificed and blood samples were collected from the saphenous vein to measure the blood glucose and serum insulin level. The pancreatic specimens were removed and processed for light microscopy, electron microscopy examination and immunohistochemical study. The results of this study showed that MC fruit aqueous extract reduced the blood glucose level as well as glibenclamide and increased the serum insulin level in the treated diabetic rats (P<0.05). The fruit extract of MC alleviated pancreatic damage and increased the number of β-cells in the diabetic treated rats (P<0.05). Our results suggest that oral feeding of MC fruit extract may have a significant role in the renewal of pancreatic β-cells in the nSTZ rats.
    Matched MeSH terms: Blood Glucose/metabolism
  2. Abdul Kadir NA, Rahmat A, Jaafar HZ
    J Obes, 2015;2015:846041.
    PMID: 26171246 DOI: 10.1155/2015/846041
    This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg(-1)), medium dose (200 mg kg(-1)), or high dose (300 mg kg(-1)) or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p < 0.05). Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity along with a significant increase of total antioxidant status (TAS) (p < 0.05). Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p < 0.05). This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.
    Matched MeSH terms: Blood Glucose/metabolism
  3. Abdul Nasir NA, Agarwal R, Sheikh Abdul Kadir SH, Vasudevan S, Tripathy M, Iezhitsa I, et al.
    PLoS One, 2017;12(3):e0174542.
    PMID: 28350848 DOI: 10.1371/journal.pone.0174542
    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase activity, polyol levels and oxidative-nitrosative stress. These effects of tocotrienol invlove reduced NFκB activation, lower iNOS expression, restoration of ATP level, ATPase activities, calpain activity and lens protein levels.
    Matched MeSH terms: Blood Glucose/metabolism
  4. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
    Matched MeSH terms: Blood Glucose/metabolism
  5. Abu Bakar MH, Sarmidi MR, Tan JS, Mohamad Rosdi MN
    Eur J Pharmacol, 2017 Mar 15;799:73-83.
    PMID: 28161417 DOI: 10.1016/j.ejphar.2017.01.043
    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance.
    Matched MeSH terms: Glucose/metabolism
  6. Abu Bakar MH, Cheng KK, Sarmidi MR, Yaakob H, Huri HZ
    Molecules, 2015 May 07;20(5):8242-69.
    PMID: 25961164 DOI: 10.3390/molecules20058242
    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.
    Matched MeSH terms: Glucose/metabolism
  7. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Blood Glucose/metabolism
  8. Abu Bakar N
    Trop Biomed, 2015 Sep;32(3):485-93.
    PMID: 26695209 MyJurnal
    Studies show that the pH of the malaria parasite's digestive vacuole (DV) plays a key role in the physiological functions of this organelle and antimalarial drug accumulation, and yet is technically difficult to measure. In this study, a flow cytometry-based technique was developed to measure the DV pH using a ratiometric pH indicator, FITC-dextran loaded into the DV of saponin-permeabilized parasites. To calculate the DV pH, a standard pH calibration curve was generated by incubating the saponin-permeabilized cells in buffers with different pH in the presence of an ionophore, CCCP. The measured average pH of the DV was 5.27 ± 0.03 that is approximately the same in the parasites observed microscopically by Hayward et al. (2006) (5.50 ± 0.14) using the same probe. The removal of glucose from the medium, causing a rapid depletion of parasite ATP, resulted in an alkalization of the DV. The DV was reacidified upon restoration of glucose to the medium. This technique provides a rapid, simple and quantitative measurement of the DV pH on a large number of cells. It will also be useful in future attempts to evaluate the effect of antimalarial drugs (i.e. chloroquine and artemisinin-based drugs) in pH changes of the DV.
    Matched MeSH terms: Glucose/metabolism
  9. Abu Seman N, Witasp A, Wan Mohamud WN, Anderstam B, Brismar K, Stenvinkel P, et al.
    J Diabetes Res, 2013;2013:298019.
    PMID: 24350299 DOI: 10.1155/2013/298019
    Recent reports have demonstrated that elevated plasma long pentraxin 3 (PTX3) levels are associated with cardiovascular and chronic kidney diseases. In the current study, we investigated the plasma PTX3 levels in 296 Malay subjects including the subjects with normal glucose tolerance (NGT) and type 2 diabetes (T2DM) patients with or without DN by using an enzyme-linked immune-sorbent assay. Results showed that in males, plasma PTX3 levels in T2DM patients without DN were lower than that in the subjects with NGT (2.78 versus 3.98 ng/mL; P = 0.021). Plasma PTX3 levels in T2DM patients with DN were decreased compared to the patients without DN (1.63 versus 2.78 ng/mL; P = 0.013). In females, however, no significant alteration of plasma PTX3 levels among NGT subjects and T2DM patients with and without DN was detected. Furthermore, an inverse correlation between PTX3 and body mass index was found in male subjects with NGT (P = 0.012; r = -0.390), but not in male T2DM patients, neither in all females. The current study provided the first evidence that decreased plasma PTX3 levels are associated with T2DM and DN in Malay men and also suggested that PTX3 may have different effects in DN and chronic kidney diseases.
    Matched MeSH terms: Blood Glucose/metabolism
  10. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al.
    Biomed Pharmacother, 2016 Jul;81:439-452.
    PMID: 27261624 DOI: 10.1016/j.biopha.2016.04.032
    INTRODUCTION: Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope.

    METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.

    RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.

    CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.

    Matched MeSH terms: Blood Glucose/metabolism
  11. Adam SH, Giribabu N, Rao PV, Sayem AS, Arya A, Panichayupakaranant P, et al.
    Eur J Pharmacol, 2016 Jan 15;771:173-90.
    PMID: 26703866 DOI: 10.1016/j.ejphar.2015.12.028
    Effect of Rhinacanthin C on hyperglycaemia, hyperlipidemia and pancreatic dysfunction in diabetes was investigated. In-vitro effect of Rhinacanthin C on glucose uptake was studied in 3T3-L1 cell line. Meanwhile, in-vivo effect of 28-days treatment with 5mg/kg/day or 20mg/kg/day Rhinacanthin C was studied in streptozotocin-nicotinamide induced male diabetic rats. Following completion of treatment, fasting blood glucose (FBG), HbA1c, insulin and lipid profile levels were measured by biochemical assays. Histopathological changes in pancreas were observed by light microscopy while levels of pancreatic oxidative stress were determined by enzymatic assays. Expression of insulin, TNFα, Ikkβ and caspase-3 in pancreas were quantified by immunohistochemistry. Molecular docking was used to identify interactions between Rhinacathin C with SOD or GPx enzymes. Dose-dependent increase in glucose uptake was observed with increasing doses of Rhinacathin C. Plasma FBG, HbA1c and lipid profile except LDL levels and pancreatic malonaldehyde level were reduced but serum insulin and pancreatic anti-oxidative enzymes (SOD, CAT and GPx) levels were increased in diabetic rats receiving Rhinacanthin C treatment. Decreased pancreatic histopathological changes with higher pancreatic insulin and Glut-2 levels but lower TNFα, Ikkβ and caspase-3 levels were observed in diabetic rats receiving Rhinacanthin C (P<0.05 compared to non-treated diabetic rats). In diabetic rats which received Rhinacathin C, changes in the above parameters did not achieve the value in non-diabetic rats. Docking shows Rhinacathin C possesses high degree interactions with SOD and GPx. By possessing these effects, Rhinacanthin C could be used as agent to alleviate pancreatic and other complications in diabetes.
    Matched MeSH terms: Blood Glucose/metabolism
  12. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Glucose/metabolism*
  13. Afiqah RN, Paital B, Kumar S, Majeed AB, Tripathy M
    J. Mol. Recognit., 2016 11;29(11):544-554.
    PMID: 27406464 DOI: 10.1002/jmr.2554
    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Glucose/metabolism*
  14. Ahmad F, Yusof AP, Bainbridge M, Ab Ghani S
    Biosens Bioelectron, 2008 Jul 15;23(12):1862-8.
    PMID: 18440218 DOI: 10.1016/j.bios.2008.03.006
    The mechanisms involving insulin and anti-hypertensive drugs regulation for in vivo cerebral glucose metabolism are not well-understood. This might be due to lack of direct means of measuring cerebral glucose. It is known that the continuous delivery of glucose to the brain is critical for its normal metabolic function. In this study, we report the effect of insulin and anti-hypertensive drugs on glucose level in the striatum of rats. The rats were divided into two groups, i.e. hyperglycemia (14.8+/-0.3mM plasma glucose) and diabetic (10.8+/-0.2mM plasma glucose). A custom-built glucose microsensor was implanted at coordinates A/P 1.0 from bregma, M/L +2.5 and D/V -5.0 (from dura) in the striatum. The amperometric response obtained at +0.23 V vs. Ag|AgCl corresponded to the glucose level in striatum. By varying the concentrations of protaminc zinc insulin infused into the rats, striatum glucose level was found to remain constant throughout, i.e. 9.8+/-0.1 and 4.7+/-0.1mM for hyperglycemic rats and for diabetic rats, respectively. However, infusion of valsartan and felodipine has lowered the striatum glucose level significantly. These findings agreed with the hypothesis that suggested striatum glucose uptake do not depend on insulin but is clearly dependant on anti-hypertensive drugs administration.
    Matched MeSH terms: Glucose/metabolism
  15. Ahmad H, Singh R, Ghosh AK
    Indian J. Med. Res., 2009 Aug;130(2):160-5.
    PMID: 19797813
    Sago (Metroxylin sagu) is one of the main sources of native starch. In Malaysia sago dishes are commonly eaten with sugar. However, other societies use sago as a staple food item instead of rice or potato. The study was undertaken to investigate the effect of ingestion of different physical forms of sago supplementation on plasma glucose and plasma insulin responses, as compared to the white bread supplementation in man, during resting condition.
    Matched MeSH terms: Blood Glucose/metabolism*
  16. Ahmad Z, Rasouli M, Azman AZ, Omar AR
    BMC Biotechnol, 2012 Sep 19;12:64.
    PMID: 22989329 DOI: 10.1186/1472-6750-12-64
    BACKGROUND: Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features.

    RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.

    CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

    Matched MeSH terms: Glucose/metabolism
  17. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
    Matched MeSH terms: Glucose/metabolism*
  18. Al-Hamodi Z, Saif-Ali R, Ismail IS, Ahmed KA, Muniandy S
    J. Biomed. Biotechnol., 2012;2012:234937.
    PMID: 22577291 DOI: 10.1155/2012/234937
    Elevated activity of plasminogen activator inhibitor-1 (PAI-1) and decreased tissue plasminogen activator (tPA) activity are considered to be important risk factors for type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). The aim of this study was to investigate the association of the PAI-1 4G/5G and tPA Alu-repeat I/D polymorphisms with T2DM in Malaysian subjects. Serum insulin, coronary risk panel, plasma glucose, and PAI-1 4G/5G and tPA Alu-repeat I/D polymorphisms were studied in 303 T2DM subjects (227 with MetS and 76 without MetS) and 131 normal subjects without diabetes and MetS. Statistical analysis showed that the dominant and additive models of PAI-1 4G/5G polymorphism showed a weak association with T2DM without MetS (OR = 2.35, P = 0.045; OR = 1.67, P = 0.058). On the other hand, the recessive model of the tPA Alu-repeat I/D polymorphism showed an association with T2DM with MetS (OR = 3.32, P = 0.013) whereas the dominant and additive models of the tPA Alu-repeat I/D polymorphism were not associated with T2DM either with or without MetS.
    Matched MeSH terms: Blood Glucose/metabolism
  19. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Hussaini J, Khor GH
    ScientificWorldJournal, 2014;2014:908098.
    PMID: 25485304 DOI: 10.1155/2014/908098
    To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction.
    Matched MeSH terms: Blood Glucose/metabolism
  20. Al-Shookri A, Khor GL, Chan YM, Loke SC, Al-Maskari M
    Diabet Med, 2012 Feb;29(2):236-44.
    PMID: 21824187 DOI: 10.1111/j.1464-5491.2011.03405.x
    In this randomized controlled trial we evaluated the effectiveness of medical nutritional therapy on Arab patients with Type 2 diabetes in Oman delivered by a dietitian.
    Matched MeSH terms: Blood Glucose/metabolism
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links