Displaying publications 1 - 20 of 162 in total

Abstract:
Sort:
  1. Ab Hamid SS, Zahari NK, Yusof N, Hassan A
    Cell Tissue Bank, 2014 Mar;15(1):15-24.
    PMID: 23187886 DOI: 10.1007/s10561-012-9353-x
    Human amniotic membrane that has been processed and sterilised by gamma irradiation is widely used as a biological dressing in surgical applications. The morphological structure of human amniotic membrane was studied under scanning electron microscopy (SEM) to assess effects of gamma radiation on human amniotic membrane following different preservation methods. The amniotic membrane was preserved by either air drying or submerged in glycerol before gamma irradiated at 15, 25 and 35 kGy. Fresh human amniotic membrane, neither preserved nor irradiated was used as the control. The surface morphology of glycerol preserved amnion was found comparable to the fresh amniotic membrane. The cells of the glycerol preserved was beautifully arranged, homogonous in size and tended to round up. The cell structure in the air dried preserved amnion seemed to be flattened and dehydrated. The effects of dehydration on intercellular channels and the microvilli on the cell surface were clearly seen at higher magnifications (10,000×). SEM revealed that the changes of the cell morphology of the glycerol preserved amnion were visible at 35 kGy while the air dried already changed at 25 kGy. Glycerol preservation method is recommended for human amniotic membrane as the cell morphological structure is maintained and radiation doses lower than 25 kGy for sterilization did not affect the appearance of the preserved amnion.
    Matched MeSH terms: Glycerol/pharmacology
  2. Abd Razak RA, Ahmad Tarmizi AH, Abdul Hammid AN, Kuntom A, Ismail IS, Sanny M
    PMID: 31437078 DOI: 10.1080/19440049.2019.1654139
    This study was conducted to investigate on the effect of different sampling regions of palm-refined oils and fats on the 2- and 3-monochloropropanediol fatty acid esters (MCPDE) and glycidol fatty acid esters (GE) levels. The American Oil Chemists' Society (AOCS) Official Method Cd 29a-13 on the determination of MCPDE and GE in edible oils and fats by acid transesterification was successfully verified and optimised, with slight modification using 7890A Agilent GC system equipped with 5975C quadrupole detector. The determined limits of detection (LOD) for MCPDE were 0.02 mg kg-1 and 0.05 mg kg-1 for GE. The method performance has showed good recovery between 80% and 120% for all pertinent compounds with seven replicates assayed in three separate days. Round robin test with two European laboratories, i.e. Eurofins and SGS, has shown compliance results with those of the present study. Among the sampling regions, only one refinery located in the central region of Malaysia showed a significant increment of the MCPDE and GE levels after refining process. The GE level averaging at 2.5 mg kg-1 was slightly higher than that of 3-MCPDE averaging at 1.3 mg kg-1. Both esters were preferentially partitioned into the liquid phase rather than the solid phase after fractionation. However, the overall results exhibited no direct correlation between the esters content and the different sampling locations of the palm oil products in Malaysia. Analysis of total chlorine content also displayed significant variations between sampling locations which clearly show its effect on the chlorine content in the CPO samples.
    Matched MeSH terms: Glycerol/analogs & derivatives*; Glycerol/analysis
  3. Abdul Raman AA, Tan HW, Buthiyappan A
    Front Chem, 2019;7:774.
    PMID: 31799239 DOI: 10.3389/fchem.2019.00774
    For every ton of biodiesel produced, about 100 kg of glycerol is also generated as a by-product. The traditional method of removing glycerol is mainly by gravity separation or centrifugation. This method generates crude glycerol, which may still contain impurities such as methanol, oil, soap, salt, and other organic materials at ppm levels. The effective usage of crude glycerol is important to improve the economic sustainability of the biodiesel industry while reducing the environmental impacts caused by the generated waste. The application and value of crude glycerol can be enhanced if these impurities are removed or minimized. Thus, it is important to develop a method which can increase the economic and applicable value of crude glycerol. Therefore, in the present study, the dual step purification method comprised of acidification and ion exchange techniques has been used to purify the crude glycerol and convert it into higher-value products. The acidification process started with the pH adjustment of the crude glycerol, using phosphoric acid to convert soap into fatty acid and salts. Then, the pretreated glycerol was further purified by ion exchange with a strong cation H+ resin. Gas chromatography (GC) was used to analyze both crude and purified glycerol and expressed as the weight percentage of glycerol content. A maximum glycerol purity of 98.2% was obtained after the dual step purification method at the optimized conditions of 60% of solvent, the flow rate of 15 mL/min and 40 g of resin. Further, the glycerol content measured being within the accepted amount of BS 2621:1979. Therefore, this study has proven that the proposed crude glycerol purification process is effective in improving the glycerol purity and could enhance the applicability of glycerol in producing value-added products which bring new revenue to the biodiesel industry.
    Matched MeSH terms: Glycerol
  4. Abudula T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, et al.
    Polymers (Basel), 2020 May 29;12(6).
    PMID: 32485817 DOI: 10.3390/polym12061233
    Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
    Matched MeSH terms: Glycerol
  5. Adzaly NZ, Jackson A, Kang I, Almenar E
    Meat Sci, 2016 Mar;113:116-23.
    PMID: 26656870 DOI: 10.1016/j.meatsci.2015.11.023
    The goal of this study was to validate the commercial feasibility of a novel casing formed from chitosan containing cinnamaldehyde (2.2%, w/v), glycerol (50%, w/w) and Tween 80 (0.2% w/w) under traditional sausage manufacturing conditions. Meat batter was stuffed into both chitosan and collagen (control) casings and cooked in a water bath. Before and after cooking, both casings were compared for mechanical, barrier, and other properties. Compared to collagen, the chitosan casing was a better (P≤0.05) barrier to water, oxygen, liquid smoke, and UV light. In mechanical and other properties, the chitosan casing had higher (P≤0.05) tensile strength, lower (P≤0.05) elongation at break and tensile energy to break, and better (P≤0.05) transparency whereas a similar (P>0.05) water solubility to the collagen casing. Overall, the chitosan casing was less affected by sausage manufacturing conditions than the collagen casing, indicating that chitosan casing has potential as an alternative to the current collagen casing in the manufacture of sausages.
    Matched MeSH terms: Glycerol
  6. Ahmad Farid MA, Hassan MA, Roslan AM, Ariffin H, Norrrahim MNF, Othman MR, et al.
    Environ Sci Pollut Res Int, 2021 Jun;28(22):27976-27987.
    PMID: 33527241 DOI: 10.1007/s11356-021-12585-7
    This study provides insight into the decolorization strategy for crude glycerol obtained from biodiesel production using waste cooking oil as raw material. A sequential procedure that includes physico-chemical treatment and adsorption using activated carbon from oil palm biomass was investigated. The results evidenced decolorization and enrichment of glycerol go hand in hand during the treatment, achieving >89% color removal and > 98% increase in glycerol content, turning the glycerol into a clear (colorless) solution. This is attributed to the complete removal of methanol, free fatty acids, and triglycerides, as well as 85% removal of water, and 93% removal of potassium. Properties of the resultant glycerol met the quality standard of BS 2621:1979. The economic aspects of the proposed methods are examined to fully construct a predesign budgetary estimation according to chemical engineering principles. The starting capital is proportionate to the number of physical assets to acquire where both entail a considerable cost at USD 13,200. Having the benefit of sizeable scale production, it reasonably reduces the operating cost per unit product. As productivity sets at 33 m3 per annum, the annual operating costs amount to USD 79,902 in glycerol decolorization. This is translatable to USD 5.38 per liter glycerol, which is ~69% lower compared to using commercial activated carbon.
    Matched MeSH terms: Glycerol*
  7. Ahmad Hazmi AS, Abd Maurad Z, Mohd Noor MA, Nek Mat Din NSM, Idris Z
    J Sep Sci, 2021 Apr;44(7):1471-1481.
    PMID: 33522105 DOI: 10.1002/jssc.202000929
    Ethylene glycol is a super commodity chemical and it has vital roles in various applications. Its co-production with other chemicals, such as ethylene carbonate and glycerol carbonate, has promised cheaper production cost. Its quantification presents a challenge as its contaminants, such as ethylene carbonate, produce a signal-reducing effect in flame ionized detector. The aim of this study is to evaluate external standard to quantify the composition of glycol mixture. Measurement system analysis was employed on the external standard method. Reliability of the external standard is statistically significant with low p-values, excellent capability indices, and high F-values. The external standard is found to have remarkable precision and trueness as both capability indices are mirroring each other. Furthermore, the capability analysis has a strong correlation with quality measurement. Based on capability indices, the limit of detection is recommended at S/N = 25 and the limit of quantification is recommended at S/N = 100 for a reliable measurement. A high degree of reliability is achieved coherently as almost all uncertainties of coefficients of variations are less than 5%. The established method was validated and successfully applied to glycol mixture at azeotropic distillation pilot plant.
    Matched MeSH terms: Glycerol
  8. Ahmad MS, Suardi N, Shukri A, Nik Ab Razak NNA, Oglat AA, Makhamrah O, et al.
    Eur J Radiol Open, 2020;7:100257.
    PMID: 32944594 DOI: 10.1016/j.ejro.2020.100257
    Introduction: Hepatocellular carcinoma (HCC) is one of the most common cancer in the world, and the effectiveness of its treatment lies in its detection in its early stages. The aim of this study is to mimic HCC dynamically through a liver phantom and apply it in multimodality medical imaging techniques including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound.

    Methods and materials: The phantom is fabricated with two main parts, liver parenchyma and HCC inserts. The liver parenchyma was fabricated by adding 2.5 wt% of agarose powder combined with 2.6 wt% of wax powder while the basic material for the HCC samples was made from polyurethane solution combined with 5 wt% glycerol. Three HCC samples were inserted into the parenchyma by using three cylinders implanted inside the liver parenchyma. An automatic injector is attached to the input side of the cylinders and a suction device connected to the output side of the cylinders. After the phantom was prepared, the contrast materials were injected into the phantom and imaged using MRI, CT, and ultrasound.

    Results: Both HCC samples and liver parenchyma were clearly distinguished using the three imaging modalities: MRI, CT, and ultrasound. Doppler ultrasound was also applied through the HCC samples and the flow pattern was observed through the samples.

    Conclusion: A multimodal dynamic liver phantom, with HCC tumor models have been fabricated. This phantom helps to improve and develop different methods for detecting HCC in its early stages.

    Matched MeSH terms: Glycerol
  9. Ahmad MS, Ab Rahim MH, Alqahtani TM, Witoon T, Lim JW, Cheng CK
    Chemosphere, 2021 Aug;276:130128.
    PMID: 33714877 DOI: 10.1016/j.chemosphere.2021.130128
    Over the past decades, research efforts are being devoted into utilizing the biomass waste as a major source of green energy to maintain the economic, environmental, and social sustainability. Specifically, there is an emerging consensus on the significance of glycerol (an underutilised waste from biodiesel industry) as a cheap, non-toxic, and renewable source for valuable chemicals synthesis. There are numerous methods enacted to convert this glycerol waste to tartronic acid, mesoxalic acid, glyceraldehyde, dihydroxyacetone, oxalic acid and so on. Among these, the green electro-oxidation technique is one of the techniques that possesses potential for industrial application due to advantages such as non-toxicity process, fast response, and lower energy consumption. The current review covers the general understanding on commonly used techniques for alcohol (C1 & C2) conversion, with a specific insight on glycerol (C3) electro-oxidation (GOR). Since catalysts are the backbone of chemical reaction, they are responsible for the overall economy prospect of any processes. To this end, a comprehensive review on catalysts, which include noble metals, non-noble metals, and non-metals anchored over various supports are incorporated in this review. Moreover, a fundamental insight into the development of future electrocatalysts for glycerol oxidation along with products analysis is also presented.
    Matched MeSH terms: Glycerol*
  10. Ahmad MS, Cheng CK, Singh S, Ong HR, Abdullah H, Hong CS, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5916-5927.
    PMID: 32331197 DOI: 10.1166/jnn.2020.18549
    Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
    Matched MeSH terms: Glycerol
  11. Aissaoui T, AlNashef IM, Hayyan M, Hashim MA
    PMID: 25985123 DOI: 10.1016/j.saa.2015.05.001
    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.
    Matched MeSH terms: Glycerol
  12. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Glycerol
  13. Al-Araji, L., Rahman, R.N.Z.A., Basri, M., Salleh, A.B.
    ASM Science Journal, 2008;2(1):45-56.
    MyJurnal
    The growth and production of biosurfactant by P. seudomonas aeruginosa (181) was dependant on nutritional factors. Among the eleven carbon sources tested, glucose supported the maximum growth (0.25 g/L) with the highest biosurfactant yield and this was followed by glycerol. Glucose reduced the surface tension to 35.3 dyne/cm and gave an E24 reading of 62.7%. Butanol gave the lowest growth and had no biosurfactant production. For the nitrogen sources tested, casamino acid supported a growth of 0.21 g/L which reduced the surface tension to 41.1 dyne/cm and gave an E24 reading of 56%. Soytone was assimilated similarly, with good growth and high biosurfactant production. Corn steep liquor gave the lowest growth and did not show any biosurfactant activity.
    Matched MeSH terms: Glycerol
  14. Ariff, A.B., Ooi, T.C., Shamsuddin, Z.H., Halimi, M.S.
    MyJurnal
    The exponential fed-batch cultivation of Bacillus sphaericus UPMB10 in 2 l stirred tank fermenter was performed by feeding the initial batch culture with 14 g l-1 of glycerol according to the algorithm aimed at controlling the specific growth rate (μ) of the bacterium. Very high viable cell count (1.14 x 1010 cfu ml-1), which was four times higher as compared to batch cultivation, was achieved in the fed-batch with a controlled μ at 0.4 h-1. In repeated exponential fed-batch cultivation, consisting of four cycles of harvesting and recharging, a final cell concentration of 1.9 x 1011 cfu ml-1 was obtained at the end of the fourth cycle (46 h). Meanwhile, acetylene reduction of cell samples collected from repeated fed-batch cultivation remained unchanged and was maintained at around 20 nmol C2H2 h-1 ml-1 after prolonged cultivation period, and was comparable to those obtained in batch and exponential fed-batch cultivation. Glycerol could be used as a carbon source for high performance cultivation of B. sphaericus, a nitrogen fixing bacterium, in repeated fed-batch cultivation with high cell yield and cell productivity. The productivity (0.68 g l-1 h-1) for repeated fed-batch cultivation increased about 6 times compared to that obtained in conventional batch cultivation (0.11 g l1 h-1). A innovative method in utilizing glycerol for efficient cultivation of nitrogen fixing bacterium could be beneficial to get more understanding and reference in manipulating the integrated plans for sustainable and profitable biodiesel industry.
    Matched MeSH terms: Glycerol
  15. Arifin, N., Cheong, L.Z., Koh, S.P., Long, K., Tan, C.P., Yusoff, M.S.A., et al.
    ASM Science Journal, 2010;4(2):113-122.
    MyJurnal
    Several binary and ternary medium- and long-chain triacylglycerol (MLCT)-enriched margarine formulations were examined for their solid fat content, heating profile, polymorphism and textural properties. MLCT feedstock was produced through enzymatic esterification of capric and stearic acids with glycerol. The binary formulations were produced by mixing MLCT feedstock blend (40%–90%) and palm olein (10%–60%) with 10% increments (w/w). Solid fat profiles of commercial margarines were used as a reference to determine the suitability of the formulations for margarine production. The solid fat content of the binary formulations of MO 82 and MO 91 (M, MLCT, O, palm olein) were similar to the commercial margarines at 25°C which met the basic requirement for efficient dough consistency. Ternary formulations using reduced MLCT feedstock blend proportion (from 80%–90% to 60%–70%) were also developed. The reduction of MLCT feedstock blend was
    done as it had the highest production cost (3USD/kg) in comparison to palm olein (0.77USD/kg) and palm stearin (0.7USD/kg). The proportions of 5%–15% of palm stearin were substituted with palm olein in MO 64 and MO 73 (M, MLCT; O, palm olein) formulations with 5% increment (w/w). As a result, MOS 702010 and MOS 603010 (M, MLCT; O, palm olein; S, palm stearin) margarine formulations showed similar SFC % to the commercial margarines at 25ºC. These formulations were subsequently chosen to produce margarines. The onset melting and complete melting points of MLCT-enriched margarine formulations were high (51.04ºC –57.93ºC) due to the presence of a high amount of long chain saturated fatty acids. Most of the formulations showed β΄- crystals. MOS 702010 was selected as the best formulation due to values for textural parameters comparable (P
    Matched MeSH terms: Glycerol
  16. Asnawi ASFM, B Aziz S, M Nofal M, Hamsan MH, Brza MA, Yusof YM, et al.
    Polymers (Basel), 2020 Jun 26;12(6).
    PMID: 32604910 DOI: 10.3390/polym12061433
    In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10-4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
    Matched MeSH terms: Glycerol
  17. Asnawi ASFM, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, et al.
    Polymers (Basel), 2021 Jan 26;13(3).
    PMID: 33530553 DOI: 10.3390/polym13030383
    The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10-5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
    Matched MeSH terms: Glycerol
  18. Ayoib A, Gopinath SCB, Zambry NS, Yahya ARM
    J Basic Microbiol, 2024 Apr;64(4):e2300585.
    PMID: 38346247 DOI: 10.1002/jobm.202300585
    This study aimed to isolate biosurfactant-producing and hydrocarbon-degrading actinomycetes from different soils using glycerol-asparagine and starch-casein media with an antifungal agent. The glycerol-asparagine agar exhibited the highest number of actinomycetes, with a white, low-opacity medium supporting pigment production and high growth. Biosurfactant analyses, such as drop collapse, oil displacement, emulsification, tributyrin agar test, and surface tension measurement, were conducted. Out of 25 positive isolates, seven could utilize both olive oil and black oil for biosurfactant production, and only isolate RP1 could produce biosurfactant when grown in constrained conditions with black oil as the sole carbon source and inducer, demonstrating in situ bioremediation potential. Isolate RP1 from oil-spilled garden soil is Gram-staining-positive with a distinct earthy odor, melanin formation, and white filamentous colonies. It has a molecular size of ~621 bp and 100% sequence similarity to many Streptomyces spp. Morphological, biochemical, and 16 S rRNA analysis confirmed it as Streptomyces sp. RP1, showing positive results in all screenings, including high emulsification activity against kerosene (27.2%) and engine oil (95.8%), oil displacement efficiency against crude oil (7.45 cm), and a significant reduction in surface tension (56.7 dynes/cm). Streptomyces sp. RP1 can utilize citrate as a carbon source, tolerate sodium chloride, resist lysozyme, degrade petroleum hydrocarbons, and produce biosurfactant at 37°C in a 15 mL medium culture, indicating great potential for bioremediation and various downstream industrial applications with optimization.
    Matched MeSH terms: Glycerol
  19. Ayoub M, Khayoon MS, Abdullah AZ
    Bioresour Technol, 2012 May;112:308-12.
    PMID: 22437049 DOI: 10.1016/j.biortech.2012.02.103
    The synthesis of oxygenated fuel additives via solvent freebase-catalyzed etherification of glycerol is reported. The products of glycerol etherification arediglycerol (DG) and triglycerol (TG) with DG being the favorable one. The catalytic activity of different homogeneous alkali catalysts (LiOH, NaOH, KOH and Na(2)CO(3)) was investigated during the glycerol etherification process. LiOH exhibited an excellent catalytic activity during this reaction, indicated by the complete glycerol conversion with a corresponding selectivity of 33% toward DG. The best reaction conditions were a reaction temperature of 240°C, a catalyst/glycerol mass ratio of 0.02 and a reaction time of 6h. The influences of various reaction variables such as nature of the catalyst, catalyst loading, reaction time and reaction temperature on glycerol etherification were elucidated. Industrially, the findings attained in this study might contribute towards promoting the biodiesel industry through utilization of its by-products.
    Matched MeSH terms: Glycerol/chemistry*
  20. Azarakhsh, N., Azizah, O., Ghazali H.M., Tan, C.P., Mohd Adzahan, N.
    MyJurnal
    The effects of alginate-based [sodium alginate, 0-2% (w/v), glycerol, 0-2% (w/v) and sunflower oil 0.025% (w/v)] and gellan-based [gellan, 0-1% (w/v), glycerol, 0-1% (w/v) and sunflower oil 0.025% (w/v)] edible coatings on fresh-cut pineapple were evaluated by response surface methodology (RSM). Weight loss, firmness and respiration rate were considered as response variables. The results showed that for all response variables the RSM models were significantly (p0.05) difference between predicted and experimental values. The overall optimum region predicted by RSM indicated that alginate and gellan-based coatings containing 1.29% (w/v) sodium alginate, 1.16% (w/v) glycerol and 0.56% (w/v) gellan gum, 0.89% (w/v) glycerol were optimized formulations respectively.
    Matched MeSH terms: Glycerol
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links