Displaying publications 1 - 20 of 165 in total

Abstract:
Sort:
  1. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Glycerol
  2. Zentou H, Zainal Abidin Z, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M
    ACS Omega, 2021 Feb 16;6(6):4137-4146.
    PMID: 33644536 DOI: 10.1021/acsomega.0c04025
    Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (μ) whereas no effect was observed on the half-velocity constant (Ks). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.
    Matched MeSH terms: Glycerol
  3. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: Glycerol
  4. Al-Araji, L., Rahman, R.N.Z.A., Basri, M., Salleh, A.B.
    ASM Science Journal, 2008;2(1):45-56.
    MyJurnal
    The growth and production of biosurfactant by P. seudomonas aeruginosa (181) was dependant on nutritional factors. Among the eleven carbon sources tested, glucose supported the maximum growth (0.25 g/L) with the highest biosurfactant yield and this was followed by glycerol. Glucose reduced the surface tension to 35.3 dyne/cm and gave an E24 reading of 62.7%. Butanol gave the lowest growth and had no biosurfactant production. For the nitrogen sources tested, casamino acid supported a growth of 0.21 g/L which reduced the surface tension to 41.1 dyne/cm and gave an E24 reading of 56%. Soytone was assimilated similarly, with good growth and high biosurfactant production. Corn steep liquor gave the lowest growth and did not show any biosurfactant activity.
    Matched MeSH terms: Glycerol
  5. Arifin, N., Cheong, L.Z., Koh, S.P., Long, K., Tan, C.P., Yusoff, M.S.A., et al.
    ASM Science Journal, 2010;4(2):113-122.
    MyJurnal
    Several binary and ternary medium- and long-chain triacylglycerol (MLCT)-enriched margarine formulations were examined for their solid fat content, heating profile, polymorphism and textural properties. MLCT feedstock was produced through enzymatic esterification of capric and stearic acids with glycerol. The binary formulations were produced by mixing MLCT feedstock blend (40%–90%) and palm olein (10%–60%) with 10% increments (w/w). Solid fat profiles of commercial margarines were used as a reference to determine the suitability of the formulations for margarine production. The solid fat content of the binary formulations of MO 82 and MO 91 (M, MLCT, O, palm olein) were similar to the commercial margarines at 25°C which met the basic requirement for efficient dough consistency. Ternary formulations using reduced MLCT feedstock blend proportion (from 80%–90% to 60%–70%) were also developed. The reduction of MLCT feedstock blend was
    done as it had the highest production cost (3USD/kg) in comparison to palm olein (0.77USD/kg) and palm stearin (0.7USD/kg). The proportions of 5%–15% of palm stearin were substituted with palm olein in MO 64 and MO 73 (M, MLCT; O, palm olein) formulations with 5% increment (w/w). As a result, MOS 702010 and MOS 603010 (M, MLCT; O, palm olein; S, palm stearin) margarine formulations showed similar SFC % to the commercial margarines at 25ºC. These formulations were subsequently chosen to produce margarines. The onset melting and complete melting points of MLCT-enriched margarine formulations were high (51.04ºC –57.93ºC) due to the presence of a high amount of long chain saturated fatty acids. Most of the formulations showed β΄- crystals. MOS 702010 was selected as the best formulation due to values for textural parameters comparable (P
    Matched MeSH terms: Glycerol
  6. Razali, M.H., Ismail, N.A., Osman, U.M., Amin, K.A.M.
    ASM Science Journal, 2018;11(101):158-165.
    MyJurnal
    The aim of this work was to investigate the effect of glycerol concentration on mechanical
    and physical properties of gellan gum (GG) biofilm. The biofilm was prepared using solvent
    casting method and the effective glycerol concentration was found to be within 30-50%
    w/w (based on GG weight). At 60 and 70 w/w% of glycerol, the films started to distort
    because the films was flexible and brittle. As glycerol concentration was increased the tensile
    strength (TS) and Youngs modulus (E) of films decreased. Somehow, elongation at break
    (EAB), water vapor transmission rate (WVTR) and swelling of films was increased. Glycerol
    plasticized GG biofilm was thermally stable and flexible, proposed its can be exploited as
    film-forming material and with optimized glycerol concentration it has good mechanical and
    physical properties for edible biofilm.
    Matched MeSH terms: Glycerol
  7. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
    Matched MeSH terms: Glycerol/chemistry
  8. Zuki AB, Hafeez YM, Loqman MY, Noordin MM, Norimah Y
    Anat Histol Embryol, 2007 Oct;36(5):349-56.
    PMID: 17845224
    This study investigates the effect of preservation methods on the performance of bovine parietal pericardium grafts in a rat model. Mid-ventral full thickness abdominal wall defects of 3 x 2.5 cm in size were created in 90 male Sprague-Dawley rats (300-400 g), which were divided into three groups of 30 rats each. The abdominal defects of group one and two were repaired with lyophilized and glycerolized bovine pericardium grafts, while the defects of group three were repaired with expanded polytetrafluoroethylene (ePTFE) Mycro Mesh as a positive control. Another group of 30 rats underwent sham operation and was used for comparison as negative control. Each group of rats (n = 30) was divided into five subgroups (n = 6) and killed at 1, 3, 6, 9 and 18 weeks post-surgery for gross and morphological evaluations. The rats tolerated the surgical procedure well with a total mortality of 0.05%. No serious post-operative clinical complications or signs of rejection were encountered. Adhesions between the grafts and the underlying visceral organs observed in the study were mostly results of post-surgical complications. Glycerol preservation delayed degradation and replacement of the grafts, whereas lyophilization caused early resorption and replacement of the grafts. The glycerolized grafts were replaced with thick dense fibrous tissue, and the lyophilized grafts were replaced with thin loose fibrous tissue. The healing characteristic of the bovine pericardium grafts was similar to those of the sham-operated group, and quite different from those of the ePTFE Mycro Mesh. The outcome of the present study confirmed the superiority of glycerolized bovine pericardium grafts over its lyophilized counter part.
    Matched MeSH terms: Glycerol/pharmacology
  9. Memon AA, Wahid H, Rosnina Y, Goh YM, Ebrahimi M, Nadia FM
    Anim. Reprod. Sci., 2012 Dec;136(1-2):55-60.
    PMID: 23182473 DOI: 10.1016/j.anireprosci.2012.10.020
    This study was conducted to determine the effect of antioxidants on standard semen parameters, lipid peroxidation and fertility of Boer goat semen after cryopreservation. Ejaculates from four bucks were collected, evaluated and pooled at 37°C. The pooled semen was diluted with Tris citric acid fructose for washing. Semen samples, which were diluted with a Tris-based extender containing the antioxidant ascorbic acid (8.5mg/ml), butylated hydroxytoluene (2mM), cysteine (5mM) and hypotaurine (10mM) and an extender without antioxidant supplementation were cooled to 4°C and frozen in 0.25 straws with programmable freezer and finally stored in liquid nitrogen. Data (10 replicates) were analyzed by one-way analysis of variance. Mean (±SEM) progressive motility was significantly higher in ascorbic acid than other supplement groups and control samples (P>0.05). Best values were observed in ascorbic acid followed by BHT, cysteine, and hypotaurine. Antioxidant supplementation in extender showed significant (P<0.05) better values than the control group for sperm membrane integrity, acrosome integrity and viability. The ability of antioxidants to reduce the lipid peroxidation (LPO) after freeze thawing was measured by the formation of malondialdehyde (MDA) using the thiobarbituric acid method. Results showed that addition of antioxidants significantly reduced the rate of LPO in comparison to control (P<0.05). Ascorbic acid exhibited better values (1.27±0.28), than butylated hydroxytoluene, cysteine and hypotaurine 1.32±0.42, 2.27±0.16 and 2.38±0.17 respectively, which are significantly better than control (3.52±0.54). Higher pregnancy rate was observed with ascorbic acid followed by butylated hydroxtolune, hypotaurine and cysteine. However, differences in the fertility rate were non-significant with hypotaurine, cysteine and control groups.
    Matched MeSH terms: Glycerol
  10. Rusidah Mat Yatim, Kannan, Thirumulu Ponnuraj, Suzina Sheikh Ab Hamid, Shazana Hilda Shamsudin
    MyJurnal
    The aim of this study was to determine the efficiency of different human amniotic membrane (HAM) processing methods on the concentration, purity and integrity of RNA. Two different techniques (Technique1 andTechnique2) were employed for the processing of HAM, which differed in terms of washing solution, sample storage conditions and processing time. Based on preservation of HAM, three groups were formed under each technique. In Technique 1, the groups were fresh frozen 1 (F1), glycerol preserved (GP) and gamma irradiated glycerol preserved (IGP); where else in Technique 2, the groups were fresh frozen 2 (F2), 50%glycerol/Dulbecco’s modified Eagle medium (DMEM) cryopre served HAM diluted with phosphate buffered saline(GB) and 50% glycerol/DMEM cryop reserved HAM diluted with diethyl procarbonate water (GD). Total RNA was extracted from the samples and their concentration, purity and integrity were examined. The F2 sample of which there was no pre-washing step and involved direct sample storage at-80oC, shorter processing time and chilled processing conditions had yielded better quality of RNA compared to the others.
    Matched MeSH terms: Glycerol
  11. Chew KM, Sudirman R, Seman N, Yong CY
    Biomed Mater Eng, 2014;24(1):199-207.
    PMID: 24211899 DOI: 10.3233/BME-130800
    The study was conducted based on two objectives as framework. The first objective is to determine the point of microwave signal reflection while penetrating into the simulation models and, the second objective is to analyze the reflection pattern when the signal penetrate into the layers with different relative permittivity, εr. Thus, several microwave models were developed to make a close proximity of the in vivo human brain. The study proposed two different layers on two different characteristics models. The radii on the second layer and the corresponding antenna positions are the factors for both models. The radii for model 1 is 60 mm with an antenna position of 10 mm away, in contrast, model 2 is 10 mm larger in size with a closely adapted antenna without any gap. The layers of the models were developed with different combination of materials such as Oil, Sandy Soil, Brain, Glycerin and Water. Results show the combination of Glycerin + Brain and Brain + Sandy Soil are the best proximity of the in vivo human brain grey and white matter. The results could benefit subsequent studies for further enhancement and development of the models.
    Matched MeSH terms: Glycerol/chemistry
  12. Gunny AA, Arbain D, Nashef EM, Jamal P
    Bioresour Technol, 2015 Apr;181:297-302.
    PMID: 25661309 DOI: 10.1016/j.biortech.2015.01.057
    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.
    Matched MeSH terms: Glycerol/pharmacology
  13. Ayoub M, Khayoon MS, Abdullah AZ
    Bioresour Technol, 2012 May;112:308-12.
    PMID: 22437049 DOI: 10.1016/j.biortech.2012.02.103
    The synthesis of oxygenated fuel additives via solvent freebase-catalyzed etherification of glycerol is reported. The products of glycerol etherification arediglycerol (DG) and triglycerol (TG) with DG being the favorable one. The catalytic activity of different homogeneous alkali catalysts (LiOH, NaOH, KOH and Na(2)CO(3)) was investigated during the glycerol etherification process. LiOH exhibited an excellent catalytic activity during this reaction, indicated by the complete glycerol conversion with a corresponding selectivity of 33% toward DG. The best reaction conditions were a reaction temperature of 240°C, a catalyst/glycerol mass ratio of 0.02 and a reaction time of 6h. The influences of various reaction variables such as nature of the catalyst, catalyst loading, reaction time and reaction temperature on glycerol etherification were elucidated. Industrially, the findings attained in this study might contribute towards promoting the biodiesel industry through utilization of its by-products.
    Matched MeSH terms: Glycerol/chemistry*
  14. Khayoon MS, Hameed BH
    Bioresour Technol, 2011 Oct;102(19):9229-35.
    PMID: 21840708 DOI: 10.1016/j.biortech.2011.07.035
    Oxygenated fuel additives can be produced by acetylation of glycerol. A 91% glycerol conversion with a selectivity of 38%, 28% and 34% for mono-, di- and triacetyl glyceride, respectively, was achieved at 120 °C and 3 h of reaction time in the presence of a catalyst derived from activated carbon (AC) treated with sulfuric acid at 85 °C for 4h to introduce acidic functionalities to its surface. The unique catalytic activity of the catalyst, AC-SA5, was attributed to the presence of sulfur containing functional groups on the AC surface, which enhanced the surface interaction between the glycerol molecule and acyl group of the acetic acid. The catalyst was reused in up to four consecutive batch runs and no significant decline of its initial activity was observed. The conversion and selectivity variation during the acetylation is attributed to the reaction time, reaction temperature, catalyst loading and glycerol to acetic acid molar ratio.
    Matched MeSH terms: Glycerol/analysis; Glycerol/metabolism*
  15. Tan KT, Lee KT, Mohamed AR
    Bioresour Technol, 2010 Feb;101(3):965-9.
    PMID: 19773156 DOI: 10.1016/j.biortech.2009.09.004
    In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 degrees C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.
    Matched MeSH terms: Glycerol/chemistry*
  16. Tee ZK, Jahim JM, Tan JP, Kim BH
    Bioresour Technol, 2017 Jun;233:296-304.
    PMID: 28285221 DOI: 10.1016/j.biortech.2017.02.110
    Calcium carbonate was evaluated as a replacement for the base during the fermentation of glycerol by a highly productive strain of 1,3-propanediol (PDO), viz., Clostridium butyricum JKT37. Due to its high specific growth rate (µmax=0.53h(-1)), 40g/L of glycerol was completely converted into 19.6g/L of PDO in merely 7h of batch fermentation, leaving only acetate and butyrate as the by-products. The accumulation of these volatile fatty acids was circumvented with the addition of calcium carbonate as the pH neutraliser before the fermentation was inoculated. An optimal amount of 15g/L of calcium carbonate was statistically determined from screening with various glycerol concentrations (20-120g/L). By substituting potassium hydroxide with calcium carbonate as the pH neutraliser for fermentation in a bioreactor, a similar yield (YPDO/glycerol=0.6mol/mol) with a constant pH was achieved at the end of the fermentation.
    Matched MeSH terms: Glycerol
  17. Thi S, Lee KM
    Bioresour Technol, 2019 Jun;282:525-529.
    PMID: 30898410 DOI: 10.1016/j.biortech.2019.03.065
    In this work, a novel solvent, deep eutectic solvent (DES) was applied to examine its effectiveness in pretreating OPEFB. Three types of DESs, i.e. choline chloride-lactic acid (ChCl-LA), choline chloride-urea (ChCl-U) and choline chloride-glycerol (ChCl-G) were investigated. The pretreatment performance was based on cellulose digestibility, structural and morphology changes. At molar ratio of 1:2, ChCl-LA attained the highest reducing sugars yield of 20.7%, followed by ChCl-G (20.0%) and ChCl-U (16.9%). FT-IR and SEM results further confirmed the outstanding ability of ChCl-LA due of its ability in cellulose, hemicellulose and lignin disruption, exposing its cellulose fraction to enzymatic hydrolysis. ChCl-LA is also more favorable compare to acid and alkaline solvents as it could prevent sugars loss, use of expensive corrosion resistant equipment and ease products separation.
    Matched MeSH terms: Glycerol
  18. Song G, Sun C, Madadi M, Dou S, Yan J, Huan H, et al.
    Bioresour Technol, 2024 Mar;395:130358.
    PMID: 38253243 DOI: 10.1016/j.biortech.2024.130358
    This study investigated an innovative strategy of incorporating surfactants into alkaline-catalyzed glycerol pretreatment and enzymatic hydrolysis to improve lignocellulosic biomass (LCB) conversion efficiency. Results revealed that adding 40 mg/g PEG 4000 to the pretreatment at 195 °C obtained the highest glucose yield (84.6%). This yield was comparable to that achieved without surfactants at a higher temperature (240 °C), indicating a reduction of 18.8% in the required heat input. Subsequently, Triton X-100 addition during enzymatic hydrolysis of PEG 4000-assisted pretreated substrate increased glucose yields to 92.1% at 6 FPU/g enzyme loading. High-solid fed-batch semi-simultaneous saccharification and co-fermentation using this dual surfactant strategy gave 56.4 g/L ethanol and a positive net energy gain of 1.4 MJ/kg. Significantly, dual assistance with surfactants rendered 56.3% enzyme cost savings compared to controls without surfactants. Therefore, the proposed surfactant dual-assisted promising approach opens the gateway to economically viable enzyme-mediated LCB biorefinery.
    Matched MeSH terms: Glycerol*
  19. Hassan M, Maarof ND, Ali ZM, Noor NM, Othman R, Mori N
    Biosci Biotechnol Biochem, 2012;76(8):1463-70.
    PMID: 22878188
    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
    Matched MeSH terms: Glycerol
  20. Chanasit W, Hodgson B, Sudesh K, Umsakul K
    Biosci Biotechnol Biochem, 2016 Jul;80(7):1440-50.
    PMID: 26981955 DOI: 10.1080/09168451.2016.1158628
    Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.
    Matched MeSH terms: Glycerol
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links